Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computer berechnen Umgestaltung von Mikroorganismen zu Zellfabriken

01.08.2017

Wissenschaftler am Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg haben mit Hilfe neu entwickelter Computeralgorithmen fünf biotechnologische Produktionsorganismen wie Escherichia coli und Bäckerhefe daraufhin analysiert, wie sich das Wachstum der Zellen optimal mit der Überproduktion von (Bio-)Chemikalien koppeln lässt. In ihren Berechnungen zeigten sie, dass für fast jedes Stoffwechselprodukt in den untersuchten Organismen geeignete genetische Interventionen existieren, mit denen eine Kopplung der Synthese des Produkts mit Zellwachstum möglich ist. Die Ergebnisse der Studie tragen grundlegend zur Entwicklung von neuen biotechnologischen Prozessen bei.

Mikroorganismen können ein breites Spektrum an Chemikalien und Biokraftstoffen synthetisieren und werden in einer stärker biobasierten Industrie weiter an Bedeutung gewinnen. Oftmals produzieren die Zellen die gewünschten Substanzen aber nicht von allein oder nicht effizient genug und müssen daher durch geeignete genetische Eingriffe im Stoffwechsel zu Hochleistungsproduzenten umfunktioniert werden.


Dr. Oliver Hädicke untersucht ein bakterielles Stoffwechselnetz mit der Software CellNetAnalyzer, entwickelt von Wissenschaftlern des Max-Planck-Instituts für Dynamik komplexer technischer Systeme.

Max-Planck-Institut Magdeburg

Der Stoffwechsel (Metabolismus) selbst eines recht einfachen Mikroorganismus ist hochgradig komplex und umfasst in der Regel Hunderte oder gar Tausende Metabolite (wie Zucker oder organische Säuren) und biochemische Reaktionen.

Um im Labyrinth der sich daraus ergebenden Stoffwechselnetzwerke nicht den Überblick zu verlieren, verwenden Wissenschaftler neben Laborexperimenten verstärkt mathematische Modelle und Computersimulationen. Diese helfen unter anderem bei der Suche nach Kombinationen von genetischen Eingriffen, die eine normale Zelle in eine biochemische Fabrik zur Synthese eines gewünschten Produktes umwandeln.

Im Idealfall lässt sich dabei das Wachstum der Zelle obligatorisch mit der Synthese des Produkts koppeln. Die Zelle kann sich dann nämlich nur noch vermehren, wenn die gewünschte Chemikalie als Nebenprodukt entsteht. Eine solche Kopplung läuft zum Beispiel in natürlicher Art und Weise ab, wenn Hefen unter Sauerstoffausschluss das Gärprodukt Alkohol produzieren (müssen).

Da Mikroorganismen gewöhnlich immer nach maximalem Wachstum streben, vereinen die Ingenieure dadurch geschickt ihre Interessen mit denen des Lebewesens. Für bestimmte Produkte wurde in konkreten Beispielen gezeigt, dass eine solche Kopplung erzwungen werden kann. Bisher war aber unklar, inwieweit sich dieses Prinzip auf ein breites Spektrum von anderen Produktklassen und für verschiedene Mikroorganismen verallgemeinern und anwenden lässt.

Wachstumsgekoppelte Überproduktion ist fast universell möglich

Dieser Frage sind nun Wissenschaftler der Arbeitsgruppe „Analyse und Redesign biologischer Netzwerke“ am Max-Planck-Institut in Magdeburg unter der Leitung von Dr. Steffen Klamt auf den Grund gegangen. Die Forscher untersuchten für fünf der wichtigsten biotechnologischen Produktionsorganismen (einschließlich der häufig verwendeten Arbeitspferde Escherichia coli und Bäckerhefe, aber auch andere wie zum Beispiel photosynthetische Bakterien), für welche Metabolite eine mit Wachstum gekoppelte Synthese möglich ist.

Für diese aufwändigen Berechnungen entwickelten sie zunächst effiziente Algorithmen. Als zentrales und zugleich überraschendes Ergebnis zeigten sie damit schließlich, dass sich für fast jeden Metaboliten (>94%) in den fünf Modellorganismen eine Interventionsstrategie finden lässt, die Wachstum an eine Überproduktion des Metaboliten mit einer guten Ausbeute erzwingt.

Die fünf Organismen decken ein breites Spektrum von relevanten Produkten für die chemische Industrie ab (wie zum Beispiel Biokraftstoffe, Biopolymere, Nahrungsergänzungsmittel oder Plattformchemikalien zur Synthese anderer Substanzen). Somit sind diese Ergebnisse, die in der Zeitschrift Nature Communications veröffentlicht wurden, von weitreichender Bedeutung für die Entwicklung neuer biotechnologischer Prozesse.

Unter Anwendung der oben beschriebene Kopplungsstrategie hatte die Gruppe jüngst in einer Parallelstudie einen Stamm des Bakteriums Escherichia coli mittels computergestützter Berechnungen erfolgreich so verändert, dass dieser Itaconsäure, eine wichtige Plattformchemikalie, mit bisher unerreichter Ausbeute aus Traubenzucker produziert. Dieses konkrete Anwendungsbeispiel hat das Potenzial der Kopplungsstrategie nochmals nachhaltig demonstriert.

Für weitere Forschungen zur computergestützten Optimierung des Stoffwechsels von Mikroorganismen wird die Gruppe um Steffen Klamt in den nächsten fünf Jahren mit zwei Millionen Euro durch den Europäischen Forschungsrat (European Research Council, ERC) gefördert.

Originalveröffentlichungen
1.Axel von Kamp and Steffen Klamt, "Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms.," Nature Communications 8, 15926 (2017). DOI: 10.1038/ncomms15956

2. Björn-Johannes Harder, Katja Bettenbrock, and Steffen Klamt, "Model-Based metabolic engineering enables high yield itaconic acid production by Escherichia coli," Metabolic Engineering 38, 29-37 (2016). DOI: 10.1016/j.ymben.2016.05.008

Weitere Informationen:

http://www.mpi-magdeburg.mpg.de/3287956/2017-08-01-mikroorganismen-zellwachstum-...

Gabriele Ebel | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics