Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computational Biology : Zellen im Computer umprogrammiert

31.07.2013
Wissenschaftler am Luxembourg Centre for Systems Biomedicine (LCSB) der Universität Luxemburg haben ein Computer-Modell entwickelt, mit dessen Voraussagen ausdifferenzierte Zellen – etwa Hautzellen – im Labor sehr effizient in völlig andere Zelltypen – beispielsweise Nervenzellen – umgewandelt werden können.

Dabei müssen keine Stammzellen erzeugt werden. Die computerbasierte Anleitung zur Umprogrammierung von Zellen hat große Bedeutung für die regenerative Medizin. Die LCSB-Forscher präsentieren ihre Ergebnisse aktuell in dem renommierten Fachjournal „Stem Cells“.


Stammzellen
iStock

Zum ersten Mal erscheint damit in diesem Wissenschaftsjournal eine Veröffentlichung, die ausschließlich auf Ergebnissen der so genannten Computational Biology beruht. (DOI: 10.1002/stem.1473)

Sämtliche Zellen eines Organismus entstehen aus embryonalen Stammzellen, die sich teilen und dabei immer stärker ausdifferenzieren. Die resultierenden Gewebezellen befinden sich in einem stabilen Zustand: Eine Hautzelle verwandelt sich nicht spontan in eine Nerven- oder Herzmuskelzelle. „An solchen Umwandlungen sind Mediziner jedoch sehr interessiert. Daraus können sich neue Optionen für die regenerative Medizin ergeben“, sagt Professor Antonio del Sol, Leiter der Computational Biology-Gruppe am LCSB.

Das Ziel: Wenn zum Beispiel Nervengewebe erkrankt ist, entnehmen Ärzte Zellen aus gesundem Gewebe des Patienten, etwa aus der Haut. Diese Hautzellenprogrammieren sie so um, dass sich daraus gesunde Nervenzellen entwickeln. Diese neu erzeugten Nervenzellen werden dann in das erkrankte Gewebe eingepflanzt. Die Hoffnung besteht darin, dass so eines Tages Krankheiten wie Parkinson gelindert oder im Idealfall sogar geheilt werden können.

Die Techniken zur Zellprogrammierung sind sehr jung: Im vergangenen Jahr haben die Stammzellforscher Shinya Yamanaka und John Burdon den Nobelpreis dafür erhalten, dass sie ausdifferenzierte Körperzellen im Labor in Stammzellen zurückverwandeln konnten. Im Jahr 2010 ist erstmals im Labor die direkte Umwandlung von Haut- in Nervenzellen gelungen. Diese Verfahren beruhen jedoch bisher auf dem Prinzip von ‚Versuch und Irrtum’. Biologen arbeiten mit ausgeklügelten Mischungen von Molekülen, den Wachstumsfaktoren, die in bestimmter Abfolge den Zellkulturen zugesetzt werden. Damit lässt sich die genetische Aktivität im Prozess der Umwandlung steuern.

Variables Springen zwischen verschiedenen Zelltypen möglich

Jetzt ersetzen die LCSB-Forscher ‚Versuch und Irrtum’ durch Computerberechnungen, wie Isaac Crespo, Informatiker und Doktorand am LCSB, erläutert: „Unser theoretisches Modell nutzt Datenbanken, in denen enormes Wissen über Genaktivitäten und ihre Wirkung gespeichert ist. Mit Hilfe der Daten identifiziert das Modell die Gene, die für die Stabilität ausdifferenzierter Zellen sorgen. Anschließend macht das System Vorschläge, welche Gene in den Ausgangszellen zu welchem Zeitpunkt ein- und wieder ausgeschaltet werden müssen, um sie in einen anderen Zelltyp zu verwandeln.“

„Unsere Vorhersagen haben sich im Labor als sehr genau herausgestellt“, sagt Professor del Sol: „Dabei ist es völlig gleichgültig, wie ähnlich sich die Zellen sind. Die Modellierungen treffen bei Zelllinien zu, die sich im Zellstammbaum gerade erst getrennt, als auch bei solchen, die sich schon sehr weit voneinander entfernt haben.“ del Sols und Crespos Modell ermöglicht also ein sehr variables Springen zwischen ganz verschiedenen Zelltypen - ohne den Umweg über Stammzellen.

Der jetzt für die Biologen anstehende nächste Schritt ist ein gewaltiger: Sie müssen nun die Wachstumsfaktoren finden, die die gewünschten Genaktivitäten in der richtigen und vorhergesagten Reihenfolge ablaufen lassen.

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/stem.1473/abstract
- Link zur Publikation
http://www.uni.lu/lcsb
- Homepage des LCSB

Britta Schlüter | idw
Weitere Informationen:
http://www.uni.lu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer 3D Portrayal Service Standard veröffentlicht

20.02.2018 | Informationstechnologie

Die GFOS stellt auf der HMI aus: Mit gfos.MES in Richtung Industrie 4.0

20.02.2018 | HANNOVER MESSE

ZUKUNFT PERSONAL SÜD & NORD: Workforce Management - der Mensch im Mittelpunkt der zukünftigen Arbeitswelt

20.02.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics