Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computational Biology : Zellen im Computer umprogrammiert

31.07.2013
Wissenschaftler am Luxembourg Centre for Systems Biomedicine (LCSB) der Universität Luxemburg haben ein Computer-Modell entwickelt, mit dessen Voraussagen ausdifferenzierte Zellen – etwa Hautzellen – im Labor sehr effizient in völlig andere Zelltypen – beispielsweise Nervenzellen – umgewandelt werden können.

Dabei müssen keine Stammzellen erzeugt werden. Die computerbasierte Anleitung zur Umprogrammierung von Zellen hat große Bedeutung für die regenerative Medizin. Die LCSB-Forscher präsentieren ihre Ergebnisse aktuell in dem renommierten Fachjournal „Stem Cells“.


Stammzellen
iStock

Zum ersten Mal erscheint damit in diesem Wissenschaftsjournal eine Veröffentlichung, die ausschließlich auf Ergebnissen der so genannten Computational Biology beruht. (DOI: 10.1002/stem.1473)

Sämtliche Zellen eines Organismus entstehen aus embryonalen Stammzellen, die sich teilen und dabei immer stärker ausdifferenzieren. Die resultierenden Gewebezellen befinden sich in einem stabilen Zustand: Eine Hautzelle verwandelt sich nicht spontan in eine Nerven- oder Herzmuskelzelle. „An solchen Umwandlungen sind Mediziner jedoch sehr interessiert. Daraus können sich neue Optionen für die regenerative Medizin ergeben“, sagt Professor Antonio del Sol, Leiter der Computational Biology-Gruppe am LCSB.

Das Ziel: Wenn zum Beispiel Nervengewebe erkrankt ist, entnehmen Ärzte Zellen aus gesundem Gewebe des Patienten, etwa aus der Haut. Diese Hautzellenprogrammieren sie so um, dass sich daraus gesunde Nervenzellen entwickeln. Diese neu erzeugten Nervenzellen werden dann in das erkrankte Gewebe eingepflanzt. Die Hoffnung besteht darin, dass so eines Tages Krankheiten wie Parkinson gelindert oder im Idealfall sogar geheilt werden können.

Die Techniken zur Zellprogrammierung sind sehr jung: Im vergangenen Jahr haben die Stammzellforscher Shinya Yamanaka und John Burdon den Nobelpreis dafür erhalten, dass sie ausdifferenzierte Körperzellen im Labor in Stammzellen zurückverwandeln konnten. Im Jahr 2010 ist erstmals im Labor die direkte Umwandlung von Haut- in Nervenzellen gelungen. Diese Verfahren beruhen jedoch bisher auf dem Prinzip von ‚Versuch und Irrtum’. Biologen arbeiten mit ausgeklügelten Mischungen von Molekülen, den Wachstumsfaktoren, die in bestimmter Abfolge den Zellkulturen zugesetzt werden. Damit lässt sich die genetische Aktivität im Prozess der Umwandlung steuern.

Variables Springen zwischen verschiedenen Zelltypen möglich

Jetzt ersetzen die LCSB-Forscher ‚Versuch und Irrtum’ durch Computerberechnungen, wie Isaac Crespo, Informatiker und Doktorand am LCSB, erläutert: „Unser theoretisches Modell nutzt Datenbanken, in denen enormes Wissen über Genaktivitäten und ihre Wirkung gespeichert ist. Mit Hilfe der Daten identifiziert das Modell die Gene, die für die Stabilität ausdifferenzierter Zellen sorgen. Anschließend macht das System Vorschläge, welche Gene in den Ausgangszellen zu welchem Zeitpunkt ein- und wieder ausgeschaltet werden müssen, um sie in einen anderen Zelltyp zu verwandeln.“

„Unsere Vorhersagen haben sich im Labor als sehr genau herausgestellt“, sagt Professor del Sol: „Dabei ist es völlig gleichgültig, wie ähnlich sich die Zellen sind. Die Modellierungen treffen bei Zelllinien zu, die sich im Zellstammbaum gerade erst getrennt, als auch bei solchen, die sich schon sehr weit voneinander entfernt haben.“ del Sols und Crespos Modell ermöglicht also ein sehr variables Springen zwischen ganz verschiedenen Zelltypen - ohne den Umweg über Stammzellen.

Der jetzt für die Biologen anstehende nächste Schritt ist ein gewaltiger: Sie müssen nun die Wachstumsfaktoren finden, die die gewünschten Genaktivitäten in der richtigen und vorhergesagten Reihenfolge ablaufen lassen.

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/stem.1473/abstract
- Link zur Publikation
http://www.uni.lu/lcsb
- Homepage des LCSB

Britta Schlüter | idw
Weitere Informationen:
http://www.uni.lu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten