Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computational Biology : Zellen im Computer umprogrammiert

31.07.2013
Wissenschaftler am Luxembourg Centre for Systems Biomedicine (LCSB) der Universität Luxemburg haben ein Computer-Modell entwickelt, mit dessen Voraussagen ausdifferenzierte Zellen – etwa Hautzellen – im Labor sehr effizient in völlig andere Zelltypen – beispielsweise Nervenzellen – umgewandelt werden können.

Dabei müssen keine Stammzellen erzeugt werden. Die computerbasierte Anleitung zur Umprogrammierung von Zellen hat große Bedeutung für die regenerative Medizin. Die LCSB-Forscher präsentieren ihre Ergebnisse aktuell in dem renommierten Fachjournal „Stem Cells“.


Stammzellen
iStock

Zum ersten Mal erscheint damit in diesem Wissenschaftsjournal eine Veröffentlichung, die ausschließlich auf Ergebnissen der so genannten Computational Biology beruht. (DOI: 10.1002/stem.1473)

Sämtliche Zellen eines Organismus entstehen aus embryonalen Stammzellen, die sich teilen und dabei immer stärker ausdifferenzieren. Die resultierenden Gewebezellen befinden sich in einem stabilen Zustand: Eine Hautzelle verwandelt sich nicht spontan in eine Nerven- oder Herzmuskelzelle. „An solchen Umwandlungen sind Mediziner jedoch sehr interessiert. Daraus können sich neue Optionen für die regenerative Medizin ergeben“, sagt Professor Antonio del Sol, Leiter der Computational Biology-Gruppe am LCSB.

Das Ziel: Wenn zum Beispiel Nervengewebe erkrankt ist, entnehmen Ärzte Zellen aus gesundem Gewebe des Patienten, etwa aus der Haut. Diese Hautzellenprogrammieren sie so um, dass sich daraus gesunde Nervenzellen entwickeln. Diese neu erzeugten Nervenzellen werden dann in das erkrankte Gewebe eingepflanzt. Die Hoffnung besteht darin, dass so eines Tages Krankheiten wie Parkinson gelindert oder im Idealfall sogar geheilt werden können.

Die Techniken zur Zellprogrammierung sind sehr jung: Im vergangenen Jahr haben die Stammzellforscher Shinya Yamanaka und John Burdon den Nobelpreis dafür erhalten, dass sie ausdifferenzierte Körperzellen im Labor in Stammzellen zurückverwandeln konnten. Im Jahr 2010 ist erstmals im Labor die direkte Umwandlung von Haut- in Nervenzellen gelungen. Diese Verfahren beruhen jedoch bisher auf dem Prinzip von ‚Versuch und Irrtum’. Biologen arbeiten mit ausgeklügelten Mischungen von Molekülen, den Wachstumsfaktoren, die in bestimmter Abfolge den Zellkulturen zugesetzt werden. Damit lässt sich die genetische Aktivität im Prozess der Umwandlung steuern.

Variables Springen zwischen verschiedenen Zelltypen möglich

Jetzt ersetzen die LCSB-Forscher ‚Versuch und Irrtum’ durch Computerberechnungen, wie Isaac Crespo, Informatiker und Doktorand am LCSB, erläutert: „Unser theoretisches Modell nutzt Datenbanken, in denen enormes Wissen über Genaktivitäten und ihre Wirkung gespeichert ist. Mit Hilfe der Daten identifiziert das Modell die Gene, die für die Stabilität ausdifferenzierter Zellen sorgen. Anschließend macht das System Vorschläge, welche Gene in den Ausgangszellen zu welchem Zeitpunkt ein- und wieder ausgeschaltet werden müssen, um sie in einen anderen Zelltyp zu verwandeln.“

„Unsere Vorhersagen haben sich im Labor als sehr genau herausgestellt“, sagt Professor del Sol: „Dabei ist es völlig gleichgültig, wie ähnlich sich die Zellen sind. Die Modellierungen treffen bei Zelllinien zu, die sich im Zellstammbaum gerade erst getrennt, als auch bei solchen, die sich schon sehr weit voneinander entfernt haben.“ del Sols und Crespos Modell ermöglicht also ein sehr variables Springen zwischen ganz verschiedenen Zelltypen - ohne den Umweg über Stammzellen.

Der jetzt für die Biologen anstehende nächste Schritt ist ein gewaltiger: Sie müssen nun die Wachstumsfaktoren finden, die die gewünschten Genaktivitäten in der richtigen und vorhergesagten Reihenfolge ablaufen lassen.

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/stem.1473/abstract
- Link zur Publikation
http://www.uni.lu/lcsb
- Homepage des LCSB

Britta Schlüter | idw
Weitere Informationen:
http://www.uni.lu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Frühwarnsystem RAWIS in Katastrophenübung mit THW final getestet

23.05.2018 | Informationstechnologie

RWI/ISL-Containerumschlag-Index dreht wieder leicht ins Plus

23.05.2018 | Wirtschaft Finanzen

Wenn Korallen Plastik fressen

23.05.2018 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics