Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computational Biology ermöglicht atomistische Einblicke in Proteinstrukturen

30.07.2012
Forschung zur Paarbildung von membranständigen Wachstumshormon-Rezeptoren: Im Rahmen eines Forschungsprojektes des Karlsruher Instituts für Technologie simulierte Anton Polyansky von den Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien atomistische Einblicke in Proteinstrukturen.
Aus den daraus gewonnenen Erkenntnissen können neue Strategien zur gezielten Ansteuerung von Rezeptoren durch pharmazeutische Wirkstoffe entwickelt werden. Die WissenschafterInnen publizieren dazu aktuell im renommierten Fachmagazin "The Journal of Biological Chemistry".

Jede Zelle steht in ständigem Informationsaustausch mit ihrer Umgebung. Üblicherweise tragen Hormone als molekulare Botenstoffe die entsprechenden Signale von außen an die Zelle heran, z.B. um sie zum Wachsen anzuregen. Membranständige Rezeptoren – d.h. Proteinmoleküle, die die Zellmembran durchspannen – leiten die Information in das Innere der Zelle weiter. Dort wird die Antwort in einer weiteren Reaktionskaskade umgesetzt. Typische Zelloberflächenrezeptoren sind die sogenannten Tyrosinkinasen, die eine entscheidende Rolle in der Zellentwicklung, Zellteilung, Wundheilung und zellulären Homöostase – dem Gleichgewichtszustand in einer Zelle – spielen.
Eine fehlerhafte Weiterleitung der Signale kann u.a. zur Krebsentstehung führen. Aus pharmakologischer Sicht bieten diese Rezeptoren einen Hauptangriffspunkt für maßgeschneiderte pharmazeutische Wirkstoffe.

Computergestützte Strukturberechnungen zur Analyse zellulärer Signal-Prozesse

Über die molekulare Funktionsweise der Tyrosinkinase-Rezeptoren ist bekannt, dass sie sich bei ihrer Aktivierung paarweise zusammen lagern, also dimerisieren. Da dies in der Membran erfolgt, ist es nahe liegend, dass auch die umgebenden Lipidmoleküle dabei eine Rolle spielen. Zellmembranen bestehen aus vielen verschiedenen Lipiden, die eine Doppelschicht ausbilden. Aufgrund ihrer heterogenen Zusammensetzung enthält diese nicht nur dünne weiche Regionen, in denen die eingelagerten Proteine frei herum schwimmen können, sondern auch dicke zähflüssige Bereiche, die als Lipid-Flöße bezeichnet werden. In letzteren Mikrodomänen finden viele Signal-Prozesse statt, da sich bestimmte Rezeptoren dort offensichtlich bevorzugt aufhalten. Es ist jedoch nicht bekannt, welchen Einfluss die Membrandicke auf die Fähigkeit zur Dimerisierung hat und ob dadurch die Signalübertragung gesteuert werden kann.

Um die Stabilität der Rezeptoren in verschiedenen Lipiden zu untersuchen und im monomeren und dimeren Zustand miteinander zu vergleichen, müssen ihre dreidimensionalen Strukturen aufgeklärt werden. Die Membran-durchspannenden Protein-Segmente bestehen jeweils nur aus einer Alpha-Helix, die sich jedoch – aufgrund der relevanten Lipidumgebung – nicht mit konventionellen kristallographischen Verfahren untersuchen lassen. Stattdessen müssen moderne spektroskopische Methoden und computergestützte Strukturberechnungen eingesetzt werden.
Claudia Muhle-Goll und Silke Hoffmann vom Karlsruher Institut für Technologie (KIT) haben in Kooperation mit der Universität Wien aktuell eine Untersuchung über die Rolle der Membrandicke bei der Rezeptor-Dimerisierung durchgeführt. Die dimere Struktur des Transmembran-Segments vom -Rezeptor des Blutplättchen-Wachstumshormons wurde unter der Leitung von Anne S. Ulrich, Professorin am Institut für Biologische Grenzflächen des KIT, aufgeklärt. Dazu wurden hochauflösende Kernspinresonanz (NMR) und orientierte Festkörper-NMR Messungen in unterschiedlichen Membranumgebungen eingesetzt sowie eine spezielle Form des orientierten Zirkulardichroismus.

Computational Biology ermöglicht Molekulardynamik-Simulationen

Anton Polyansky, Postdoc der Universität Wien, führte im Rahmen dieser Forschungsarbeit Molekulardynamik-Simulationen durch. Mit Hilfe der Supercomputer des Departments für Strukturbiologie und Computational Biology der Universität Wien konnte ein atomistischer Einblick in die Lipid-eingebettete Proteinstruktur erzielt werden. So zeigte sich in dicken Floß-ähnlichen Lipiden ein stabiles linksgängig gewundenes Dimer, welches sich jedoch zu neigen beginnt und auseinanderbricht, wenn die Doppelschicht die typische Dünne einer fluiden Zellmembran erreicht. Dieses Verhalten zeigt, dass die Wechselwirkung der Transmembran-Helix mit der Lipidumgebung einen entscheidenden Einfluss auf die Dimerisierung und Rezeptor-Aktivierung ausübt. Mit Hilfe dieser strukturellen Einblicke können nun neue Strategien zur gezielten Ansteuerung von Rezeptoren durch pharmazeutische Wirkstoffe entwickelt werden.
Publikation:
The Journal of Biological Chemistry: Hydrophobic Matching Controls the Tilt and Stability of the Dimeric Platelet-derived Growth Factor Receptor (PDGFR) β Transmembrane Segment. Silke Hoffmann; Claudia Muhle-Goll; Anton Polyansky; Sergii Afonin; Marcel Zeitler; Stephan L. Grage; Dirk Windisch; Jochen Bürck; Anne S. Ulrich. Vol. 287, Issue 31, 26178-26186, July 27, 2012.
http://www.jbc.org/content/early/2012/05/22/jbc.M111.325555

Max F. Perutz Laboratories (MFPL):
Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL beschäftigen sich rund 530 WissenschaftlerInnen aus 40 Nationen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie.

Wissenschaftlicher Kontakt (in Englisch)
Dr. Anton Polyansky
Department für Strukturbiologie und Computational Biology
Zentrum für Molekulare Biologie
Universität Wien
1030 Wien, Campus-Vienna-Biocenter 5
T +43-1-4277-522 71
anton.polyansky@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics