Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Using computational biology for the annotation of proteins

26.11.2012
Research carried out at Universidad Carlos III of Madrid (UC3M) in collaboration with the Centro Nacional de Investigaciones Oncológicas (CNIO – Spanish National Cancer Research Center) employed computational techniques to improve the characterization of proteins.
The system they developed has allowed them to predict, for example, the relationship between two human proteins and telomeres, which led to their possible implication in cellular aging and the development of cancer; this awaits experimental verification.

Proteins are molecules that are formed by chains of amino acids and they play a fundamental role in all of life, given that they contain the coded information in genes; they, therefore, carry out numerous functions in an organism: immunological (antibodies), structural (they constitute the majority of cellular material), bioregulating (they form part of enzymes) and a long list of etceteras. In short, they regulate thousands of process that take place within all organisms, including inside the human organism, and they frequently do so by means of relationships they establish with other cells.

“Analyzing and using this network of interactions is a very interesting task due to the large number of associations that exist and to the multiple forms in which one protein can influence the function of others,” explains Professor Beatriz García, of UC3M’s Computer Science department. “In such a complex biological scenario, determining the functional associations through experiments is very costly, so we have tried to apply computational tools to predict these functions and so orient experimentation,” she points out.

Thus, the idea is to use techniques from the field of Artificial Intelligence, specifically from the area of Machine Learning, to obtain useful results for Biology, as part of an emerging interdisciplinary field known as Biocomputing or Computational Biology. In this context, this line of research goes further in the annotation of the function of proteins, that is, in the determination of which protein or which group of proteins performs which task within an organism.

In short, these scientists have dealt with two specific problems: the prediction of functional associations between pairs of proteins in the bacteria Escherichia coli and the extension of biological pathways in humans. In addition, they offer conclusions regarding the interpretation of those predictions, which may help explain the function of the cellular processes that were studied.

“In particular,” states Beatriz García, “the predictions obtained regarding two human proteins stand out (E3 SUMO-protein ligase y E3 ubiquitin-protein ligase DTX1); these were previously related to the controlled degradation of certain proteins, and we can now propose a new function related to the stabilization of telomeres and, therefore, their possible implication in cellular aging and the development of cancer, which will require experimental verification”.

For this study, part of which was recently published in the journal PLoS ONE, the researcher has received the award for the best doctoral dissertation in her field (Experimental Sciences and Technology) from the Real Academia de Doctores de España (Spanish Royal Academy of Doctors).

The implications that this work holds for the scientific community are already being felt. In fact, the results of the first problem that the project analyzes have already been integrated into the predictions server EcID (E.coli Interaction Database) and they offer a reliability value for the predictions that improves the system’s performance when finding functional associations among the proteins that appear in this database.

Moreover, the second biological problem dealt with in the study opens a new area of research in Biocomputing, by extending already existing pathways. “The procedure it presents complements the only previously existing publication in the field, extending the pathways with many more proteins and exploring a greater surface of the network of interactions,” comments the researcher.

In addition, it could be applied to many more problems of functional annotation in Biology and other fields in which there is relevant information with multiple relationships. In any case, much work remains to be done in the area of Biocomputation. “There are still so many unresolved biological problems that need computational solutions,” assures Beatriz García, who highlights the relevance of this field, which is growing with the advances in new technologies; yet many computational challenges remain, such as the analysis of the new generation of sequencing. “This is an area that needs more trained professionals who can integrate Biology and Computer Science, in order to improve our knowledge of our organism at the molecular level and, finally, to facilitate the treatment of diseases,” she concludes.

Ana María Herrera | alfa
Further information:
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/biology

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie