Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Clues to chromosome crossovers

14.02.2013
Neil Hunter’s laboratory in the UC Davis College of Biological Sciences has placed another piece in the puzzle of how sexual reproduction shuffles genes while making sure sperm and eggs get the right number of chromosomes.
The basis of sexual reproduction is that a fertilized egg gets half its chromosomes from each parent — sperm and eggs each contributing one partner in each pair of chromosomes. We humans have 23 pairs of 46 chromosomes: so our sperm or eggs have 23 chromosomes each.

Before we get to the sex part, though, those sperm and eggs have to be formed from regular body cells that contain twice as many chromosomes. That happens through a specialized type of cell division, meiosis.

During meiosis, the couples in each pair of chromosomes have to, well, couple by “crossing over” with each other. Each chromosome pair must become connected by at least one crossover so that when the couples separate, they are delivered to separate sperm or egg cells.

These crossovers also mean that chromosomes can exchange chunks of DNA with each other, shuffling the genetic deck for the next generation. But if too few crossovers are formed, gametes end up with the wrong number for chromosomes, a situation that can cause infertility, pregnancy miscarriage or chromosomal diseases such as Down Syndrome.

Large-scale studies of human genetics have shown that the number of crossovers formed during meiosis is under genetic control. Moreover, women that make more crossovers tend to have more children. One gene suggested to control crossover numbers in humans, called Rnf212, is the subject of a new study by UC Davis researchers lead by Professor Neil Hunter.

Hunter studies how crossovers form and chromosomes separate at the UC Davis Department of Microbiology & Molecular Genetics and the Comprehensive Cancer Center. In 2009, he was awarded an early career fellowship from the Howard Hughes Medical Institute.

The latest paper from Hunter’s lab, published Feb. 10 in Nature Genetics, shows that Rnf212 is essential for crossing-over in mammalian cells. Crossovers form by a process called homologous recombination, in which chromosomes are first broken and then repaired by coupling with a matching template chromosome. Although hundreds of recombination events are started in each cell, only one or two crossovers will form between any given pair of chromosomes.

“There isn’t a special, predetermined site for a crossover. It can occur just about anywhere along a chromosome. But there has to be at least one and there always is,” Hunter said.

In a series of experiments in mouse cells, graduate student April Reynolds, Hunter and colleagues found that the RNF212 protein defines where crossovers will occur by binding to just one or two recombination sites per chromosome where it triggers the accumulation of the protein machinery that actually carries out the cutting and splicing of DNA.

Mice that lacked the gene for RNF212 were sterile. Mice that had one working copy of the gene were fertile, but on careful examination there were fewer crossovers formed while sperm and eggs were being made than in normal mice, potentially reducing fertility. It’s possible that this might be tied to some causes of infertility in humans.

It remains unclear how each pair of chromosomes always manages to crossover at least once. But Hunter says he is, “convinced that RNF212 holds the key to understanding this unique problem in chromosome biology.”

The full author list of the paper is: April Reynolds, Huanyu Qiao, Ye Yang, Jefferson Chen, Neil Jackson, and Kajal Biswas, all in Hunter’s laboratory at UC Davis; J Kim Holloway, Cornell University; Frédéric Baudat and Bernard de Massy, Centre National de Recherche Scientifique, Montpellier, France; Jeremy Wang, University of Pennsylvania; Christer Höög, Karolinska Institutet, Stockholm, Sweden; Paula Cohen, Cornell University; & Neil Hunter.

The work was supported by NIH and HHMI.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: PTB-Forscher können Ertrag von Solarzellen unter realen Bedingungen bestimmen

An einem neuartigen Messplatz messen die Wissenschaftler Referenzsolarzellen mit bisher unerreichter Genauigkeit

Solarzellen werden im Labor bisher unter einheitlich festgelegten Bedingungen getestet. Da die realen Bedingungen, wie die Temperatur oder der Einfallswinkel...

Im Focus: Tiroler Technologie zur Abwasserreinigung weltweit erfolgreich

Auf biologischem Weg und mit geringem Energieeinsatz wandelt ein an der Universität Innsbruck entwickeltes Verfahren in Kläranlagen anfallende Stickstoffverbindungen in unschädlichen Luftstickstoff um. Diese innovative Technologie wurde nun gemeinsam mit dem US-Wasserdienstleister DC Water weiterentwickelt und vermarktet. Für die Kläranlage von Washington DC wird die bisher größte DEMON®-Anlage errichtet.

Das DEMON®-Verfahren wurde bereits vor elf Jahren entwickelt und von der Universität Innsbruck zum Patent angemeldet. Inzwischen wird die Technologie in rund...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Optische Uhren können die Sekunde machen

Eine Neudefinition der Einheit Sekunde auf der Basis von optischen Uhren wird realistisch

Genauer sind sie jetzt schon, aber noch nicht so zuverlässig. Daher haben optische Uhren, die schon einige Jahre lang als die Uhren der Zukunft gelten, die...

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie sieht die Schifffahrt der Zukunft aus? - IAME-Jahreskonferenz in Hamburg

27.05.2016 | Veranstaltungen

Technologische Potenziale der Multiparameteranalytik

27.05.2016 | Veranstaltungen

Umweltbeobachtung in nah und fern

27.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Dezentral Wasserstoffperoxid herstellen – mit Überschussstrom

30.05.2016 | Biowissenschaften Chemie

Altkunststoffe in Gas umwandeln

30.05.2016 | Energie und Elektrotechnik

Kometeneis im Labor

30.05.2016 | Physik Astronomie