Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chronobiologie - Röntgenblick ins biologische Uhrwerk

07.06.2013
In fast allen Organismen steuert die innere Uhr zahlreiche Prozesse. Wichtige Regulatoren dieses biologischen Taktgebers sind sogenannte Cryptochrome, deren 3D-Struktur nun aufgeklärt werden konnte – möglicherweise eröffnet dies auch neue therapeutische Möglichkeiten.

In der Genaktivität über das Hormon- und Immunsystem bis zum Verhalten: Viele biologische Vorgänge laufen nach einem bestimmten Rhythmus ab, der von der inneren Uhr bestimmt wird und meist dem Tag/Nacht-Wechsel folgt. Wichtige Regulatoren dieses inneren Taktgebers sind sogenannte Cryptochrome.

Die Cryptochrome sind bei Säugetieren an der Steuerung tagesperiodisch regulierter Prozesse - etwa dem Glucosestoffwechsel – entscheidend beteiligt. Bei derTaufliege Drosophila spielt die Regulation des Cryptochroms durch Blaulicht eine wichtige Rolle bei der Synchronisation der inneren Uhr mit dem Hell-Dunkel-Zyklus der Umgebung.

Seit Jahren versuchen weltweit Forscher, die 3D-Strukturen der Säugetier Cryptochrome (mCRY1/2) und des Drosophila Cryptochroms (dCRY) zu erhalten. „Denn erst diese geben uns die hochaufgelöste Information, die wir brauchen, um daraus detaillierte Einsichten in die Mechanismen der Regulation der inneren Uhr durch mCRY beziehungsweise in die Wirkungsweise von dCRY zu gewinnen“, sagt PD Dr. Eva Wolf vom Adolf-Butenandt-Institut der LMU, die mit ihrem Team nun mithilfe von Röntgenstrukturanalysen hochaufgelöste 3D-Strukturen sowohl des Taufliegen Cryptochroms wie auch des Säugetier Cryptochroms erstellen konnte.

CRYs geben den Takt vor

Die nun entschlüsselten Strukturen ermöglichen grundlegend neue Einsichten in die molekularen Mechanismen, die die innere Uhr einstellen. So konnten die Wissenschaftler zeigen, dass die Lichtsynchronisation der Drosophila-Uhr auf einem neuartigen Phototransduktionsmechanismus beruht und mithilfe lichtinduzierter Strukturänderungen von dCRY erfolgt.

„Die Strukturanalyse von mCRY1 zeigte, wie dieses Cryptochrom mit weiteren Uhrproteinen interagiert. Durch diese Interaktionen wird die Stabilität von mCRY1 reguliert – und somit auch der Takt der inneren Uhr eingestellt“, sagt Wolf. Bestimmte Regionen von mCRY1 vermitteln zudem die Hemmung eines Transkriptionsfaktors, der seinerseits zahlreiche Gene steuert, die tagesperiodisch regulierte Prozesse und Verhaltensweisen beeinflussen.
Leben gegen die innere Uhr macht krank

Die Steuerung der inneren Uhr hat auch medizinische Bedeutung: Wer
ständig gegen seine innere Uhr lebt, dem drohen nicht „nur“ Schlafstörungen, sondern auch schwere Erkrankungen. „Schichtarbeiter etwa leiden häufiger unter Krebs oder dem Metabolischen Syndrom”, sagt Wolf. mCRYs spielen etwa bei der Regulation des Glucosespiegels eine Rolle – kommt diese aus dem Takt, können schwere Stoffwechselstörungen wie Typ-2-Diabetes die Folge sein. „Unsere Ergebnisse können hier neue therapeutische Möglichkeiten eröffnen, indem die Entwicklung von Medikamenten vorangetrieben wird, die bei den Cryptochromen ansetzen“, hofft Wolf.

Die Arbeiten wurden unter anderem im Rahmen der 3. Förderlinie der DFG Exzellenzinitiative sowie des Exzellenzclusters "Center for Integrated Protein Science Munich" (CIPSM) gefördert. (göd)

Publikation:
Crystal structures of Drosophila Cryptochrome and mouse Cryptochrome1 provide insights into circadian function
Anna Czarna, Alex Berndt, Hari Raj Singh, Astrid Grudziecki, Andreas G. Ladurner, Gyula Timinszky, Achim Kramer and Eva Wolf
Cell 2013
Doi: 10.1016/j.cell.2013.05.011

Kontakt:
PD Dr. rer. nat. Eva Wolf
Adolf Butenandt Institute for Physiological Chemistry
Tel.: 089 2180-77932
Fax: 089 2180-77093
E-Mail: eva.wolf@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics