Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chronobiologie - Röntgenblick ins biologische Uhrwerk

07.06.2013
In fast allen Organismen steuert die innere Uhr zahlreiche Prozesse. Wichtige Regulatoren dieses biologischen Taktgebers sind sogenannte Cryptochrome, deren 3D-Struktur nun aufgeklärt werden konnte – möglicherweise eröffnet dies auch neue therapeutische Möglichkeiten.

In der Genaktivität über das Hormon- und Immunsystem bis zum Verhalten: Viele biologische Vorgänge laufen nach einem bestimmten Rhythmus ab, der von der inneren Uhr bestimmt wird und meist dem Tag/Nacht-Wechsel folgt. Wichtige Regulatoren dieses inneren Taktgebers sind sogenannte Cryptochrome.

Die Cryptochrome sind bei Säugetieren an der Steuerung tagesperiodisch regulierter Prozesse - etwa dem Glucosestoffwechsel – entscheidend beteiligt. Bei derTaufliege Drosophila spielt die Regulation des Cryptochroms durch Blaulicht eine wichtige Rolle bei der Synchronisation der inneren Uhr mit dem Hell-Dunkel-Zyklus der Umgebung.

Seit Jahren versuchen weltweit Forscher, die 3D-Strukturen der Säugetier Cryptochrome (mCRY1/2) und des Drosophila Cryptochroms (dCRY) zu erhalten. „Denn erst diese geben uns die hochaufgelöste Information, die wir brauchen, um daraus detaillierte Einsichten in die Mechanismen der Regulation der inneren Uhr durch mCRY beziehungsweise in die Wirkungsweise von dCRY zu gewinnen“, sagt PD Dr. Eva Wolf vom Adolf-Butenandt-Institut der LMU, die mit ihrem Team nun mithilfe von Röntgenstrukturanalysen hochaufgelöste 3D-Strukturen sowohl des Taufliegen Cryptochroms wie auch des Säugetier Cryptochroms erstellen konnte.

CRYs geben den Takt vor

Die nun entschlüsselten Strukturen ermöglichen grundlegend neue Einsichten in die molekularen Mechanismen, die die innere Uhr einstellen. So konnten die Wissenschaftler zeigen, dass die Lichtsynchronisation der Drosophila-Uhr auf einem neuartigen Phototransduktionsmechanismus beruht und mithilfe lichtinduzierter Strukturänderungen von dCRY erfolgt.

„Die Strukturanalyse von mCRY1 zeigte, wie dieses Cryptochrom mit weiteren Uhrproteinen interagiert. Durch diese Interaktionen wird die Stabilität von mCRY1 reguliert – und somit auch der Takt der inneren Uhr eingestellt“, sagt Wolf. Bestimmte Regionen von mCRY1 vermitteln zudem die Hemmung eines Transkriptionsfaktors, der seinerseits zahlreiche Gene steuert, die tagesperiodisch regulierte Prozesse und Verhaltensweisen beeinflussen.
Leben gegen die innere Uhr macht krank

Die Steuerung der inneren Uhr hat auch medizinische Bedeutung: Wer
ständig gegen seine innere Uhr lebt, dem drohen nicht „nur“ Schlafstörungen, sondern auch schwere Erkrankungen. „Schichtarbeiter etwa leiden häufiger unter Krebs oder dem Metabolischen Syndrom”, sagt Wolf. mCRYs spielen etwa bei der Regulation des Glucosespiegels eine Rolle – kommt diese aus dem Takt, können schwere Stoffwechselstörungen wie Typ-2-Diabetes die Folge sein. „Unsere Ergebnisse können hier neue therapeutische Möglichkeiten eröffnen, indem die Entwicklung von Medikamenten vorangetrieben wird, die bei den Cryptochromen ansetzen“, hofft Wolf.

Die Arbeiten wurden unter anderem im Rahmen der 3. Förderlinie der DFG Exzellenzinitiative sowie des Exzellenzclusters "Center for Integrated Protein Science Munich" (CIPSM) gefördert. (göd)

Publikation:
Crystal structures of Drosophila Cryptochrome and mouse Cryptochrome1 provide insights into circadian function
Anna Czarna, Alex Berndt, Hari Raj Singh, Astrid Grudziecki, Andreas G. Ladurner, Gyula Timinszky, Achim Kramer and Eva Wolf
Cell 2013
Doi: 10.1016/j.cell.2013.05.011

Kontakt:
PD Dr. rer. nat. Eva Wolf
Adolf Butenandt Institute for Physiological Chemistry
Tel.: 089 2180-77932
Fax: 089 2180-77093
E-Mail: eva.wolf@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften