Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Chromosomen zusammenhält - Max-Planck-Forscher klären Struktur von DNA-Verpackungsproteinen auf

28.01.2013
Damit die Erbinformation während der Zellteilung passgenau auf die beiden Tochterzellen verteilt werden kann, müssen die DNA-Fäden geordnet und eng verpackt vorliegen.

Am Max-Planck-Institut für Biochemie in Martinsried bei München haben Wissenschaftler jetzt den Aufbau eines ringförmigen Proteinkomplexes (SMC-Kleisin) entschlüsselt, der für Ordnung bei diesem Verpackungsvorgang sorgt. Gemeinsam mit ihren Kooperationspartnern des Korea Advanced Institute of Science and Technology untersuchten sie die Proteine in Bakterien und fanden dabei strukturelle Ähnlichkeiten mit dem menschlichen Komplex. Die Ergebnisse wurden jetzt im Fachjournal Nature Structural & Molecular Biology veröffentlicht.


SMC-Proteinkomplexe bilden ringförmige Strukturen, die DNA-Moleküle umklammern und damit das Chromosom für die Verpackung in Schlaufen legen.
Copyright: MPI für Biochemie

In jeder Zelle müssen etwa zwei Meter DNA in einem Zellkern untergebracht werden, der nur einen Durchmesser von wenigen Tausendstel Millimetern hat. Die DNA ist darin in einzelnen Chromosomen organisiert, die als sehr lange Fäden vorliegen. Werden sie bei der Teilung der Zelle nicht gleichmäßig auf die Tochterzellen aufgeteilt, können Krebs oder Erbdefekte wie zum Beispiel Trisomie 21 entstehen. Um daher für einen sicheren Transport der DNA bei der Zellteilung zu sorgen, müssen die langen und verknäulten DNA-Fäden dicht verpackt werden.

Dieser Schritt ist bisher nur in groben Ansätzen verstanden. Eine Schlüsselrolle spielen hierbei die SMC-Kleisin-Proteinkomplexe, die aus zwei Proteinarmen (SMC) und einem Bindeglied (Kleisin) bestehen. Die Arme legen sich wie ein Ring um die DNA und können so verdoppelte Chromosomen oder zwei entfernte Teile desselben Chromosoms miteinander verknüpfen.

Von Bakterien lernen
Diese Methode der DNA-Verpackung nutzen auch einfache Organismen wie Bakterien. Wissenschaftler um Gruppenleiter Stephan Gruber konnten jetzt in Zusammenarbeit mit ihren Kollegen aus Südkorea den Aufbau eines Vorläufers der menschlichen SMC-Kleisin-Komplexe aus dem Bakterium Bacillus subtilis aufklären. Sie konnten zeigen, dass der bakterielle SMC-Kleisin-Komplex zwei Arme aus identischen SMC-Proteinen besitzt, die einen Ring bilden. Die Arme unterscheiden sich in ihrer Funktion erst durch die verschiedenen Enden des Kleisin-Proteins, mit dem sie verknüpft sind.

Auch im Menschen ist die DNA-Verpackungsmaschinerie ähnlich organisiert. „Wir vermuten, dass dieser asymmetrische Aufbau eine wichtige Rolle beim Öffnen und Schließen des Rings um die DNA spielt“, erklärt Frank Bürmann, Doktorand in der Gruppe „Chromosomale Organisation und Dynamik“. Die Wissenschaftler fanden zudem heraus, wie die Enden des Kleisins zwischen korrekten und falschen Bindungsstellen auf einem Armpaar unterscheiden können.

Der Zusammenhalt von Chromosomen ist auch bei der Fortpflanzung von entscheidender Bedeutung. In menschlichen Eizellen muss er über Jahrzehnte bestehen bleiben, damit die Reifeteilung der Eizelle fehlerfrei erfolgen kann. Versagt der Zusammenhalt, ist dies eine wahrscheinliche Ursache für Altersunfruchtbarkeit oder das Auftreten von Erbdefekten wie Trisomie 21. „Die Aufklärung der Struktur der SMC-Kleisin Proteinkomplexe ist ein wichtiger Meilenstein, um die komplizierte Organisation der Chromosomen zu verstehen“, sagt Stephan Gruber. [VS]

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften