Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chromosomen-Zentromere werden epigenetisch vererbt

04.11.2011
Histon-Protein CenH3 allein kann die Bildung von Zentromeren auslösen und diese von Generation zu Generation weitergeben

Zentromere sind spezialisierte Regionen des Genoms, die unter dem Mikroskop besonders deutlich in X-förmigen Chromosomen als Einschnürung zu erkennen sind. An ihnen setzt während der Zellteilung das Zellskelett an, das die Chromosomen auf die beiden Tochterzellen verteilt.


Modell zur epigenetischen Vererbung des Zentromers, wie sie bei höheren Organismen mit Zellkern abläuft. Das Histon CenH3 sorgt während der Zellteilung dafür, dass neues Protein in die beiden DNA-Stränge eingebaut wird. So kann der Ort des Zentromers von Generation zu Generation weitergeben werden. © MPI für Immunbiologie und Genetik


Ein mit einer DNA-Bindedomäne (grün) versehenes CenH3-Histon kann gezielt an einen spezifischen Abschnitt eines Chromatinfadens (rot) binden. Es rekrutiert natürliches CenH3 (blau), das sich links und rechts von der DNA-Bindedomäne ausbreitet. Diese Eigenschaft ist ein wesentliches Merkmal der epigenetischen Vererbung des Zentromers. © MPI für Immunbiologie und Epigenetik

Der Ort des Zentromers wird in den meisten Organismen nicht durch die DNA-Sequenz festgelegt. Wissenschaftler des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg konnten nun zeigen, das Position, Funktion und Vererbung des Zentromers durch ein DNA-Verpackungsprotein, das Histon CenH3, bestimmt wird. Diese Entdeckung könnte helfen, künstliche menschliche Chromosomen für Gentherapien in der Medizin zu entwickeln.

Zentromere dienen als Plattform für den Aufbau eines Proteinkomplexes, dem so genannten Kinetochor. Dieser dient während der Zellteilung als Ansatzstelle für das Zellskeletts und ermöglicht, die Chromosomen zu den gegenüberliegenden Zellpolen zu ziehen. In den meisten Organismen wird der Ort des Zentromers nicht durch die Abfolge der Erbgutbausteine, also die DNA-Sequenz, sondern epigenetisch festgelegt. Ausnahme ist lediglich die einzellige Bäckerhefe, in der eine spezifische DNA-Sequenz den Ort des Zentromers „codiert“.

Ein besonders vielversprechender Kandidat für eine solche epigenetische Zentromer-Markierung ist eine Variante des Histon H3 namens CenH3. Histon-Proteine binden die DNA weitgehend unabhängig von der zugrunde liegenden Sequenz und helfen das lange, fadenförmige DNA-Molekül zu verpacken. CenH3 kommt in unterschiedlichen Organismen ausschließlich in DNA-Regionen rund um das Zentromer vor. Die Forschungsgruppe von Patrick Heun des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg und Kollegen des Helmholtz Zentrum München haben nun herausgefunden, dass CenH3 alleine ausreicht, um die Bildung eines Zentromers auszulösen.

Für ihre Experimente statteten die Forscher das CenH3-Histon mit einer künstlich angehängten DNA-Bindedomäne aus, so dass das Protein an eine DNA-Region binden konnte, an der sich normalerweise kein Zentromer bildet. Nun entstand dort jedoch ein funktionstüchtiger Kinetochor, der während der Zellteilung mit dem Zellskelett interagierte. Den Forschern gelang es auf diese Weise, künstliche Minichromosomen während der Zellteilung auf die beiden Tochterzellen zu verteilen. Das Protein kann dabei selbständig weitere CenH3-Proteine rekrutieren. „Dadurch ist sichergestellt, dass nach jeder Zellteilung genügend CenH3 am Zentromer vorhanden ist. Andernfalls würden die vorhandenen CenH3-Proteine nach jeder Zellteilung immer um die Hälfte weniger werden. So kann die Zentromer-Position epigenetisch von Generation zu Generation weitergegeben werden“, sagt Heun.

Der Schritt von einem DNA-identifizierten Zentromer in der Bäckerhefe, bei dem die Position „in Stein gemeißelt ist“, hin zu einer Protein-definierten und damit leichter veränderbaren Zentromer-Position spielt möglicherweise auch in der Evolution eine Rolle. Trotz ihrer Größe von bis zu mehreren Millionen DNA-Bausteinen können Zentromere an andere Stellen „springen“, ohne das sich dabei die DNA bewegt. So tritt beim Menschen in seltenen Fällen ein neues Zentromer auf, wie es auch bei nahe verwandten Affenarten vorkommt. Solche Neo-Zentromere könnten also die Ausbildung neuer Arten zur Folge haben.

Auch für die Medizin könnten die Erkenntnisse über die zentrale Rolle von CenH3 für die Zentromer-Identität wichtig sein. Als eine Alternative zur Gentherapie mit Viren möchten Wissenschaftler nämlich künstliche menschliche Chromosomen entwickeln. „Diese benötigen jedoch wie ihre natürlichen Gegenstücke ein Zentromer für die Zellteilung. Bislang ist es jedoch nicht gelungen, die Entwicklung eines Zentromers effizient zu steuern “, sagt Heun.

Ansprechpartner
Dr. Patrick Heun
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-717
E-Mail: heun@immunbio.mpg.de
Originalpublikation
María José Mendiburo, Jan Padeken, Stefanie Fülöp, Aloys Schepers and Patrick Heun
Drosophila CENH3 is sufficient for centromere formation
Science, 4 November 2011

Dr. Patrick Heun | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4625678/CenH3_zentromeren_bildung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte