Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chromosomen-Zentromere werden epigenetisch vererbt

04.11.2011
Histon-Protein CenH3 allein kann die Bildung von Zentromeren auslösen und diese von Generation zu Generation weitergeben

Zentromere sind spezialisierte Regionen des Genoms, die unter dem Mikroskop besonders deutlich in X-förmigen Chromosomen als Einschnürung zu erkennen sind. An ihnen setzt während der Zellteilung das Zellskelett an, das die Chromosomen auf die beiden Tochterzellen verteilt.


Modell zur epigenetischen Vererbung des Zentromers, wie sie bei höheren Organismen mit Zellkern abläuft. Das Histon CenH3 sorgt während der Zellteilung dafür, dass neues Protein in die beiden DNA-Stränge eingebaut wird. So kann der Ort des Zentromers von Generation zu Generation weitergeben werden. © MPI für Immunbiologie und Genetik


Ein mit einer DNA-Bindedomäne (grün) versehenes CenH3-Histon kann gezielt an einen spezifischen Abschnitt eines Chromatinfadens (rot) binden. Es rekrutiert natürliches CenH3 (blau), das sich links und rechts von der DNA-Bindedomäne ausbreitet. Diese Eigenschaft ist ein wesentliches Merkmal der epigenetischen Vererbung des Zentromers. © MPI für Immunbiologie und Epigenetik

Der Ort des Zentromers wird in den meisten Organismen nicht durch die DNA-Sequenz festgelegt. Wissenschaftler des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg konnten nun zeigen, das Position, Funktion und Vererbung des Zentromers durch ein DNA-Verpackungsprotein, das Histon CenH3, bestimmt wird. Diese Entdeckung könnte helfen, künstliche menschliche Chromosomen für Gentherapien in der Medizin zu entwickeln.

Zentromere dienen als Plattform für den Aufbau eines Proteinkomplexes, dem so genannten Kinetochor. Dieser dient während der Zellteilung als Ansatzstelle für das Zellskeletts und ermöglicht, die Chromosomen zu den gegenüberliegenden Zellpolen zu ziehen. In den meisten Organismen wird der Ort des Zentromers nicht durch die Abfolge der Erbgutbausteine, also die DNA-Sequenz, sondern epigenetisch festgelegt. Ausnahme ist lediglich die einzellige Bäckerhefe, in der eine spezifische DNA-Sequenz den Ort des Zentromers „codiert“.

Ein besonders vielversprechender Kandidat für eine solche epigenetische Zentromer-Markierung ist eine Variante des Histon H3 namens CenH3. Histon-Proteine binden die DNA weitgehend unabhängig von der zugrunde liegenden Sequenz und helfen das lange, fadenförmige DNA-Molekül zu verpacken. CenH3 kommt in unterschiedlichen Organismen ausschließlich in DNA-Regionen rund um das Zentromer vor. Die Forschungsgruppe von Patrick Heun des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg und Kollegen des Helmholtz Zentrum München haben nun herausgefunden, dass CenH3 alleine ausreicht, um die Bildung eines Zentromers auszulösen.

Für ihre Experimente statteten die Forscher das CenH3-Histon mit einer künstlich angehängten DNA-Bindedomäne aus, so dass das Protein an eine DNA-Region binden konnte, an der sich normalerweise kein Zentromer bildet. Nun entstand dort jedoch ein funktionstüchtiger Kinetochor, der während der Zellteilung mit dem Zellskelett interagierte. Den Forschern gelang es auf diese Weise, künstliche Minichromosomen während der Zellteilung auf die beiden Tochterzellen zu verteilen. Das Protein kann dabei selbständig weitere CenH3-Proteine rekrutieren. „Dadurch ist sichergestellt, dass nach jeder Zellteilung genügend CenH3 am Zentromer vorhanden ist. Andernfalls würden die vorhandenen CenH3-Proteine nach jeder Zellteilung immer um die Hälfte weniger werden. So kann die Zentromer-Position epigenetisch von Generation zu Generation weitergegeben werden“, sagt Heun.

Der Schritt von einem DNA-identifizierten Zentromer in der Bäckerhefe, bei dem die Position „in Stein gemeißelt ist“, hin zu einer Protein-definierten und damit leichter veränderbaren Zentromer-Position spielt möglicherweise auch in der Evolution eine Rolle. Trotz ihrer Größe von bis zu mehreren Millionen DNA-Bausteinen können Zentromere an andere Stellen „springen“, ohne das sich dabei die DNA bewegt. So tritt beim Menschen in seltenen Fällen ein neues Zentromer auf, wie es auch bei nahe verwandten Affenarten vorkommt. Solche Neo-Zentromere könnten also die Ausbildung neuer Arten zur Folge haben.

Auch für die Medizin könnten die Erkenntnisse über die zentrale Rolle von CenH3 für die Zentromer-Identität wichtig sein. Als eine Alternative zur Gentherapie mit Viren möchten Wissenschaftler nämlich künstliche menschliche Chromosomen entwickeln. „Diese benötigen jedoch wie ihre natürlichen Gegenstücke ein Zentromer für die Zellteilung. Bislang ist es jedoch nicht gelungen, die Entwicklung eines Zentromers effizient zu steuern “, sagt Heun.

Ansprechpartner
Dr. Patrick Heun
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-717
E-Mail: heun@immunbio.mpg.de
Originalpublikation
María José Mendiburo, Jan Padeken, Stefanie Fülöp, Aloys Schepers and Patrick Heun
Drosophila CENH3 is sufficient for centromere formation
Science, 4 November 2011

Dr. Patrick Heun | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4625678/CenH3_zentromeren_bildung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise