Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chromosomen in der Waschmaschine: Molekularbiologin entdeckt Grundlagen zur Verteilung von Erbinformation

23.11.2009
Verena Jantsch-Plunger, Biochemikerin der Max F. Perutz Laboratories der Universität Wien, untersucht die Verteilung der in Chromosomen gepackten Erbinformation während der Keimzellentwicklung (Meiose).

Mit ihrer Arbeitsgruppe entdeckte sie nun erstmals molekulare Details des Mechanismus, wie sich gleiche Chromosomenpaare beider Elternteile finden, um in die Keimzellen verteilt zu werden. Die neuen Erkenntnisse publiziert Jantsch-Plunger in der internationalen Fachzeitschrift Cell.

Bei der Befruchtung verschmelzen die Keimzellen beider Eltern und der Chromosomensatz verdoppelt sich (Diploidie). In der speziellen Zellteilung der Meiose wird der Chromosomensatz wieder halbiert. Um das erfolgreich zu bewerkstelligen, müssen sich die jeweils zusammengehörigen Chromosomenpaare (also z.B. das Chromosom 1 des Vaters und das Chromosom 1 der Mutter) finden und genetisches Material austauschen, um sich in der Folge neu gemischt in die Zellen der Nachkommen aufzuteilen. So findet man genetisches Material beider Elternteile in den Nachkommen, es entsteht genetische Diversität.

Ein Ergebnis davon: wir sehen alle unterschiedlich aus. Können sich die Chromosomenpaare nicht finden, werden sie falsch auf die neuen Zellen verteilt. Die Folge sind Erbdefekte bei Nachkommen, die Fehlgeburten oder Krankheitsbilder verursachen, die mit geistiger Zurückgebliebenheit einhergehen. Verena Jantsch-Plunger von den Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter untersucht mit Hilfe von Fördergeldern des Fonds zur Förderung der wissenschaftlichen Forschung (FWF) und des Wiener Wissenschafts- und Technologie Förderungsfonds (WWTF) unter welchen Bedingungen und in welchem Zeitrahmen sich Chromosomenpaare finden.

Protein steuert Zeitfenster der Chromosomen-Bewegung

Die Arbeitsgruppe von Verena Jantsch-Plunger konnte nun klären, dass das Protein SUN-1 eine Schlüsselrolle im molekularen Mechanismus der korrekten Chromosomen-Verteilung spielt. Innerhalb des Zellkerns werden die Chromosomen mit Hilfe eines Bewegungsapparats heftig durchmischt und bewegt. Besonders bemerkenwert ist, dass die Chromosomen an die Kernhülle angeheftet werden und von einem Bewegungsapparat ausserhalb des Zellkerns gezogen werden. Wird das gleiche Chromosom des anderen Elternteils als passend erkannt, bilden diese mit zusätzlichen Proteinen einen festen Komplex. Haben sich alle Paare gefunden, wird der Bewegungsapparat abgeschaltet, der Austausch der Erbinformation kann stattfinden.

Die Rolle des Proteins in der Erkennung der gleichen Chromosomen war bereits durch vorangegangene Arbeiten des Teams um Jantsch-Plunger bekannt, nun entdeckte die Gruppe eine weitere Funktion: Das Zeitfenster, in dem sich die Chromosomen innerhalb des Kerns bewegen können, wird ebenfalls über das Protein SUN-1 reguliert. Ist das Protein chemisch mit Phosphor modifiziert, schaltet es die Bewegungsmaschinerie der Zelle ein. Sobald die Phosphorylierung aufgehoben ist, schaltet sich der Mechanismus wieder ab. "Man kann sich das wie Sockenpaare in der Waschmaschine vorstellen", vereinfacht Jantsch-Plunger den komplexen Vorgang: "Solange sich die Waschmaschine dreht, kommen gleiche Socken zusammen und falsche stoßen einander ab. Haben sich alle Sockenpaare gefunden, schaltet sich die Maschine ab. Der Ein/Ausschalt-Knopf ist das Protein SUN-1."

Der Fadenwurm als Modellorganismus

Für die Untersuchungen der grundlegenden Mechanismen der Chromosomen-Verteilung eignet sich der Fadenwurm Caenorhabditis elegans besonders gut. Der Wurm besitzt nur sechs Chromosomen-Paare, der Mensch im Gegensatz dazu 23, und er erzeugt auch viele Nachkommen in kurzer Zeit. Daher ist auch eine statistische Aussage durch Experimente über einen kurzen Zeitraum möglich. Viele biologische Abläufe sind über die gleichen Mechanismen reguliert wie beim Menschen. Daher können die ForscherInnen von den Ergebnissen aus Fadenwurm-Experimenten auf Säugetiere, einschließlich Menschen, schließen. Alexandra Penkner, Mitarbeiterin von Jantsch-Plunger, fokusierte zunächst auf die Untersuchung von kranken Würmern, bei denen die Chromosomenverteilung gestört ist. "Zu verstehen, was schief läuft, hilft eben auch zu erkennen, wie es richtig funktioniert", erklärt Jantsch-Plunger den Denkansatz der Experimente.

Zum Erfolg dieses Projekts haben neben besonders begeisterungsfähigen jungen WissenschafterInnen auch die Massenspektrometrie-Einrichtung der Max Perutz Labs von Gustav Ammerer und Mitglieder des benachbarten Instituts für Molekulare Pathologie beigetragen.

Kurzbiografie von Verena Jantsch-Plunger

Verena Jantsch-Plunger, geboren in Linz, studierte an der Universität Wien Biochemie. Nach Forschungsaufenthalten während ihrer Diplomarbeit und Dissertation in Baltimore (USA), promovierte sie an der Universität Wien. 2008 folgte ihre Habilitation im Fach Genetik und Zellbiologie. Während des Aufbaus ihrer eigenen Forschungsgruppe profitierte die zweifache Mutter als eine der ersten Elise-Richter-Stipendiatinnen des FWF von dem modernen Profil dieses Stipendiums (z.B. finanzielle Unterstützung für die Kinderbetreuung). Einen weiteren Karriereschritt bedeutete für die Biochemikerin die Förderung von risikoreichen Projekten mit besonders flexiblen Gestaltungmöglichkeiten durch den Wiener Wissenschafts- und Technologie Förderungsfonds (WWTF).

Originalpublikation

Penkner A, Fridkin A, Gloggnitzer J, BaudrimontcA, Machacek T, Woglar A, Csaszar E, Pasierbek P, Ammerer G, Gruenbaum Y, Jantsch V. Meiotic Chromosome Homology Search Involves Modifications of the Nuclear Envelope Protein Matefin/SUN-1. Cell. 12 November 2009.

Max F. Perutz Laboratories

Die Max F. Perutz Laboratories sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. Diese inter-universitäre Kooperation ist ein neuer und innovativer Ansatz um Forschung und Lehre an beiden Universitäten zu stärken. Am Institut in der Bohr-Gasse forschen 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut. www.mfpl.ac.at

Wissenschaftlicher Kontakt:
Dr. Verena Jantsch-Plunger
Max F. Perutz Laboratories
Universität Wien
1030 Wien, Dr. Bohr-Gasse 1
T +43-1-4277-562 50
verena.jantsch@univie.ac.at
http://www.mfpl.ac.at/index.php?cid=34
Rückfragehinweise:
Dr. Lisa Cichocki
Communications
Max F. Perutz Laboratories
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-24014
lisa.cichocki@mfpl.ac.at
www.mfpl.ac.at
Dipl.-Ing. (FH) Georg Bauer
Max F. Perutz Laboratories
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-240 03
georg1.bauer@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.mfpl.ac.at/index.php?cid=34
http://www.mfpl.ac.at
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte