Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Choreografie der Moleküle – Röntgenblitze „filmen“ molekulare Schalter

20.05.2010
Einem Forscherteam der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des European XFEL, der Universität Göttingen und des Deutschen Elektronen-Synchrotrons (DESY) ist es erstmals gelungen, Freie-Elektronen-Laser-Strahlung für die Untersuchung chemischer Kristallstrukturen einzusetzen.

Die Aufnahmen erfolgten mit dem Freie-Elektronen-Laser FLASH am DESY. Wie die Experimente der Wissenschaftler zeigen, lassen sich strukturelle Momentaufnahmen der Moleküle ganz ohne Artefakte abbilden – trotz hoher Intensität des Röntgenlasers.


Die untersuchte Schalteinheit besitzt die Form von Nanoröhrchen, die durch fettsäureähnliche Komponenten aufgebaut ist. Bild: Techert / Max-Planck-Institut für biophysikalische Chemie

Die Lichtblitze des 260 Meter langen Freie-Elektronen-Lasers (FEL) am Deutschen Elektronensynchrotron sind nicht nur leistungsstark, sondern auch ultrakurz: Die kürzeste erreichte Wellenlänge ist gerade einmal sieben Nanometer (millionstel Millimeter). Ultrakurz ist auch die Dauer der Strahlungspulse, die zehn bis 50 Femtosekunden (billiardstel Sekunden) beträgt. Wie Wissenschaftler der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des Deutschen Elektronen-Synchrotrons, der Universität Göttingen und des European XFELs zeigen, lassen sich damit ultraschnell Strukturen von Molekülen aufnehmen.

Gewöhnlich entschlüsseln Forscher die Strukturen von Molekülen, indem sie daraus Kristalle züchten und diese mit Röntgenlicht durchleuchten – eine mitunter langwierige und nicht immer erfolgsgekrönte Prozedur. Nicht alle Moleküle lassen sich kristallisieren – schon gar nicht in den benötigten Mengen. Auch die Zeitauflösung solcher Experimente ist sehr begrenzt. Langsame Transportphänomene in Festkörpern oder biologische Prozesse ließen sich bisher nur fragmentarisch aufnehmen.

Stop and go – die Struktur molekularer Schalter in Echtzeit “filmen”

Strukturen extrem schnell schaltbarer Nanokristalle mit ultraschnellen Freie-Elektronen-Laser-Pulsen aufzunehmen, gelang jetzt dem Wissenschaftlerteam um Simone Techert, Leiterin der Forschungsgruppe „Strukturdynamik (bio)chemischer Systeme“ am Max-Planck-Institut für biophysikalische Chemie.

Wissenschaftler erhoffen sich von molekularen Schaltern unter anderem ein wirksames Werkzeug, um chemische und biochemische Prozesse gezielt steuern und regulieren zu können. Neben ihrer Anwendung in der Optoelektronik könnten molekulare Schalter auch in der Molekularmedizin Einsatz finden. „Mittels Röntgenlaser könnte man beispielsweise einen „Live-Mitschnitt“ vom Wirkprozess eines medizinischen Wirkstoffs mit seinem molekularen Partner aufnehmen“, erklärt die Chemikerin Techert.

Doch die Stärke des Freie-Elektronen-Lasers ist zugleich seine Schwäche. Denn die hoch ionisierende Röntgenstrahlung kann zu Strahlenschäden führen; Messartefakte wären die Folge. Dass sich gefürchtete Artefakte vermeiden lassen, zeigen die Ergebnisse der Forscher eindrucksvoll. „Mit einer Pulslänge von 20 Femtosekunden sind die Aufnahmen „im Kasten“, bevor der Zerstörungsprozess der Moleküle durch die weichen Röntgenstrahlen einsetzt“, erklärt Techert. Die Arbeiten wurden durch die Advanced Study Group der Max-Planck-Gesellschaft sowie den SFB 602 („Complex structures in condensed matter from atomic to mesoscopic scales“) und den SFB 755 („Nanoscale photonic imaging“) der Deutschen Forschungsgemeinschaft unterstützt.

Durch die hohe Intensität der FEL-Strahlung ließen sich selbst kleinste Mengen eines Molekülkristalls untersuchen. Mit Freie-Elektronen-Lasern könnten so Strukturinformationen auch aus Nano-Teilchen beziehungsweise Nano-Kristallen gewonnen werden, die sich momentan herkömmlichen Strukturbestimmungsmethoden mit Röntgenstrahlung verweigern. „Mit härterer Röntgenstrahlung der Wellenlänge von weniger als einem Nanometer könnte es zukünftig möglich sein, chemische Strukturen in kristallografischer Manier im Angstrom-Bereich zu bestimmen. Bis zu welcher strukturellen Auflösung dies möglich sein wird, bleibt mit Spannung zu erwarten“, so Max-Planck-Forscherin Techert. Die Ergebnisse der Forscher lassen hoffen, dass Freie-Elektronen-Laser künftig Einsatz finden könnten, um kleine Strukturänderungen molekularer Wirkstoffe oder Proteine „live“ in Aktion zu filmen.

Originalveröffentlichungen:
[1] I. Rajkovic, W. Quevedo, G. Busse, J. Hallmann, R. Moré, M. Petri, F. Krasniqi, A. Rudenko, Th. Tschentscher, A. Foehlisch, A. Pietsch, M. Beye, N. Stojanovic, S. Düsterer, R. Treusch, M. Tolkiehn, S. Techert: Diffraction Properties of Periodic Lattices under Free Electron Laser Radiation. Phys. Rev. Lett. 104, 125503-125506 (2010).

[2] I. Rajkovic, J. Hallmann, S. Grübel, R. More, W. Quevedo, M. Petri, S. Techert: Development of a Multipurpose Vacuum Chamber for Serial Optical and Diffraction Experiments with Free Electron Laser Radiation. Rev. Sci. Instr. 81, 045105-1-6 (2010).

Kontakt:
Dr. Simone Techert, Forschungsgruppe Strukturdynamik (bio)chemischer Systeme
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1268
Fax: +49 551 201-1501
E-Mail: stecher@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
Fax: +49 551 201-1151
Email: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.gwdg.de
http://www.mpibpc.mpg.de/research/ags/techert/index.html
http://www.mpibpc.mpg.de/groups/pr/PR/2010/10_15/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie