Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Choreografie der Moleküle – Röntgenblitze „filmen“ molekulare Schalter

20.05.2010
Einem Forscherteam der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des European XFEL, der Universität Göttingen und des Deutschen Elektronen-Synchrotrons (DESY) ist es erstmals gelungen, Freie-Elektronen-Laser-Strahlung für die Untersuchung chemischer Kristallstrukturen einzusetzen.

Die Aufnahmen erfolgten mit dem Freie-Elektronen-Laser FLASH am DESY. Wie die Experimente der Wissenschaftler zeigen, lassen sich strukturelle Momentaufnahmen der Moleküle ganz ohne Artefakte abbilden – trotz hoher Intensität des Röntgenlasers.


Die untersuchte Schalteinheit besitzt die Form von Nanoröhrchen, die durch fettsäureähnliche Komponenten aufgebaut ist. Bild: Techert / Max-Planck-Institut für biophysikalische Chemie

Die Lichtblitze des 260 Meter langen Freie-Elektronen-Lasers (FEL) am Deutschen Elektronensynchrotron sind nicht nur leistungsstark, sondern auch ultrakurz: Die kürzeste erreichte Wellenlänge ist gerade einmal sieben Nanometer (millionstel Millimeter). Ultrakurz ist auch die Dauer der Strahlungspulse, die zehn bis 50 Femtosekunden (billiardstel Sekunden) beträgt. Wie Wissenschaftler der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des Deutschen Elektronen-Synchrotrons, der Universität Göttingen und des European XFELs zeigen, lassen sich damit ultraschnell Strukturen von Molekülen aufnehmen.

Gewöhnlich entschlüsseln Forscher die Strukturen von Molekülen, indem sie daraus Kristalle züchten und diese mit Röntgenlicht durchleuchten – eine mitunter langwierige und nicht immer erfolgsgekrönte Prozedur. Nicht alle Moleküle lassen sich kristallisieren – schon gar nicht in den benötigten Mengen. Auch die Zeitauflösung solcher Experimente ist sehr begrenzt. Langsame Transportphänomene in Festkörpern oder biologische Prozesse ließen sich bisher nur fragmentarisch aufnehmen.

Stop and go – die Struktur molekularer Schalter in Echtzeit “filmen”

Strukturen extrem schnell schaltbarer Nanokristalle mit ultraschnellen Freie-Elektronen-Laser-Pulsen aufzunehmen, gelang jetzt dem Wissenschaftlerteam um Simone Techert, Leiterin der Forschungsgruppe „Strukturdynamik (bio)chemischer Systeme“ am Max-Planck-Institut für biophysikalische Chemie.

Wissenschaftler erhoffen sich von molekularen Schaltern unter anderem ein wirksames Werkzeug, um chemische und biochemische Prozesse gezielt steuern und regulieren zu können. Neben ihrer Anwendung in der Optoelektronik könnten molekulare Schalter auch in der Molekularmedizin Einsatz finden. „Mittels Röntgenlaser könnte man beispielsweise einen „Live-Mitschnitt“ vom Wirkprozess eines medizinischen Wirkstoffs mit seinem molekularen Partner aufnehmen“, erklärt die Chemikerin Techert.

Doch die Stärke des Freie-Elektronen-Lasers ist zugleich seine Schwäche. Denn die hoch ionisierende Röntgenstrahlung kann zu Strahlenschäden führen; Messartefakte wären die Folge. Dass sich gefürchtete Artefakte vermeiden lassen, zeigen die Ergebnisse der Forscher eindrucksvoll. „Mit einer Pulslänge von 20 Femtosekunden sind die Aufnahmen „im Kasten“, bevor der Zerstörungsprozess der Moleküle durch die weichen Röntgenstrahlen einsetzt“, erklärt Techert. Die Arbeiten wurden durch die Advanced Study Group der Max-Planck-Gesellschaft sowie den SFB 602 („Complex structures in condensed matter from atomic to mesoscopic scales“) und den SFB 755 („Nanoscale photonic imaging“) der Deutschen Forschungsgemeinschaft unterstützt.

Durch die hohe Intensität der FEL-Strahlung ließen sich selbst kleinste Mengen eines Molekülkristalls untersuchen. Mit Freie-Elektronen-Lasern könnten so Strukturinformationen auch aus Nano-Teilchen beziehungsweise Nano-Kristallen gewonnen werden, die sich momentan herkömmlichen Strukturbestimmungsmethoden mit Röntgenstrahlung verweigern. „Mit härterer Röntgenstrahlung der Wellenlänge von weniger als einem Nanometer könnte es zukünftig möglich sein, chemische Strukturen in kristallografischer Manier im Angstrom-Bereich zu bestimmen. Bis zu welcher strukturellen Auflösung dies möglich sein wird, bleibt mit Spannung zu erwarten“, so Max-Planck-Forscherin Techert. Die Ergebnisse der Forscher lassen hoffen, dass Freie-Elektronen-Laser künftig Einsatz finden könnten, um kleine Strukturänderungen molekularer Wirkstoffe oder Proteine „live“ in Aktion zu filmen.

Originalveröffentlichungen:
[1] I. Rajkovic, W. Quevedo, G. Busse, J. Hallmann, R. Moré, M. Petri, F. Krasniqi, A. Rudenko, Th. Tschentscher, A. Foehlisch, A. Pietsch, M. Beye, N. Stojanovic, S. Düsterer, R. Treusch, M. Tolkiehn, S. Techert: Diffraction Properties of Periodic Lattices under Free Electron Laser Radiation. Phys. Rev. Lett. 104, 125503-125506 (2010).

[2] I. Rajkovic, J. Hallmann, S. Grübel, R. More, W. Quevedo, M. Petri, S. Techert: Development of a Multipurpose Vacuum Chamber for Serial Optical and Diffraction Experiments with Free Electron Laser Radiation. Rev. Sci. Instr. 81, 045105-1-6 (2010).

Kontakt:
Dr. Simone Techert, Forschungsgruppe Strukturdynamik (bio)chemischer Systeme
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1268
Fax: +49 551 201-1501
E-Mail: stecher@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
Fax: +49 551 201-1151
Email: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.gwdg.de
http://www.mpibpc.mpg.de/research/ags/techert/index.html
http://www.mpibpc.mpg.de/groups/pr/PR/2010/10_15/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften