Chips, die das Gehirn imitieren

Neuroinformatiker der Universität Zürich und ETH Zürich zeigen, wie komplexe kognitive Fähigkeiten in sogenannte neuromorphe Chips eingebaut werden können. Sie haben somit erstmals elektronische Systeme entwickelt, deren Funktionsweise mit jener eines echten Hirns vergleichbar sind.

Kein Computer arbeitet so effizient wie das menschliche Hirn. Ein künstliches Hirn zu bauen, ist denn auch das Ziel vieler Wissenschaftler. Neuroinformatikern der Universität Zürich und der ETH Zürich ist nun ein wichtiger Schritt in diese Richtung gelungen: Sie haben sogenannte neuromorphe Chips entwickelt, die die Informationsverarbeitung des Gehirns in elektronischen Schaltungen imitieren und damit sensorische Signale effizient in Echtzeit verarbeiten können. Mithilfe dieser Chips konnten sie Datenverarbeitungssysteme bauen, die kognitive Fähigkeiten besitzen.

Neuer Ansatz: biologische Neuronen nachbilden
Die meisten Ansätze der Neuroinformatik beschränken sich auf die Entwicklung virtueller Hirnmodelle auf herkömmlichen Computern, oder bezwecken, komplexe Nervennetze auf Supercomputern zu simulieren. Den Ansatz der Zürcher Forscher, elektronische Schaltungen zu entwickeln, deren Grösse und Energieverbrauch mit jenem echter Gehirne zu vergleichen ist, verfolgen nur wenige. «Unser Ziel ist es, die Informationsverarbeitung von biologischen Neuronen und Synapsen direkt auf Mikrochips nachzubilden», erklärt Giacomo Indiveri, Professor am Institut für Neuroinformatik der Universität Zürich und ETH Zürich.

Die grosse Herausforderung ist, Netzwerke aus künstlichen, also neuromorphen, Neuronen so zu konfigurieren, dass sie bestimmte Aufgaben ausführen können. Das haben die Forscher erreicht: Sie entwickelten ein neuromorphes System, das mit nur wenigen hundert Neuronen eine komplexe sensomotorische Aufgabe in Echtzeit ausführen konnte. Die Aufgabe erforderte ein Kurzzeitgedächtnis und kontextabhängige Entscheidungsfindung – typische Eigenschaften, die für Kognitionstests benötigt werden. Dabei verknüpfte Indiveris Team Verbunde neuromorpher Neuronen zu Netzwerken, die so genannte «Finite-State-Machines» implementierten. «Finite-State-Machines» sind ein mathematisches Konzept, um logische Abläufe oder Computerprogramme zu beschreiben. Ein Verhalten kann als «Finite-State-Machine» formuliert und somit automatisiert auf die neuromorphe Hardware übertragen werden. «Die Verbindungsmuster ähneln dabei stark Strukturen, die sich auch in Gehirnen von Säugetieren finden», so Indiveri.

Chips lassen sich für beliebige Verhaltensweisen konfigurieren
Die Wissenschaftler zeigen somit erstmals, wie mit neuromorphen Mikro-Chips ein Echtzeit-Datenverarbeitungssystem gebaut werden kann, dessen Verhalten der Benutzer vorgibt. «Dank unserer Methode lassen sich neuromorphe Chips für beliebige Verhaltensweisen konfigurieren. Unsere Ergebnisse sind grundlegend für die Entwicklung neuer hirn-inspirierter Technologien», resümiert Indiveri. Eine Anwendung wäre beispielsweise, die Chips mit sensorischen neuromorphen Bauteilen wie einer künstlichen Hörschnecke oder Netzhaut zu kombinieren, wodurch komplexe kognitive Systeme entstünden, die in Echtzeit mit ihrer Umgebung interagierten.
Literatur:
E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, R. J. Douglas. Synthesizing Cognition in Neuromorphic VLSI Systems. PNAS. July 22, 2013. Doi:10.1073/pnas.0709640104
Kontakt:
Prof. Giacomo Indiveri
Institut für Neuroinformatik
Universität Zürich / ETH Zürich
Tel. +41 44 635 30 24
E-Mail: giacomo.indiveri@ini.phys.ethz.ch

Media Contact

Nathalie Huber Universität Zürich

Weitere Informationen:

http://www.uzh.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer