Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemisches Chamäleon gebändigt: Wandelbares Molekül erhält Struktur durch Lösungsmitteleffekte

14.03.2013
Computersimulationen zeigen: Protoniertes Methan wird durch Mikrosolvatation gezähmt

Wie man das Chamäleon unter den Molekülen dazu bekommt, sich auf ein bestimmtes „Aussehen“ festzulegen, haben RUB-Chemiker um Professor Dominik Marx herausgefunden. Das Molekül CH5+ ist normalerweise nicht durch eine einzige starre Struktur zu beschreiben, sondern dynamisch flexibel.


Dem „Chamäleon-Molekül“ Struktur verleihen: Je nachdem, wie viele H2-Lösungsmittelmoleküle (blau) sich an das CH5+-Molekül anlagern, verändert sich der Bereich, in dem sich die Wasserstoffe des CH5+-Moleküls bewegen (rot); seine Struktur wird also teilweise „eingefroren“. Die Flächen repräsentieren quantenmechanische Aufenthaltswahrscheinlichkeitsdichten bei einer Temperatur von 20 Kelvin.
Grafik: A. Witt, S. Ivanov, D. Marx

Mit Computersimulationen zeigte das Team vom Lehrstuhl für Theoretische Chemie, dass CH5+ eine bestimmte Struktur annimmt, sobald man Wasserstoffmoleküle anlagert. „Damit haben wir einen wichtigen Schritt getan, um in Zukunft experimentelle Schwingungsspektren zu verstehen“, sagt Dominik Marx. Die Forscher berichten in der Zeitschrift „Physical Review Letters“.

Im CH5+-Molekül sind die Wasserstoffatome permanent auf Wanderschaft

Die Supersäure CH5+, auch protoniertes Methan genannt, kommt im Weltall vor – dort, wo sich neue Sterne bilden. Forscher entdeckten das Molekül schon in den 1950er-Jahren, doch viele seiner Eigenschaften sind nach wie vor unbekannt. Anders als herkömmliche Moleküle, in denen alle Atome eine feste Position besitzen, bewegen sich die fünf Wasserstoffatome in CH5+ ständig um das Kohlenstoffzentrum. Wissenschaftler sprechen von „hydrogen scrambling“. Diese dynamisch flexible Struktur klärten die Arbeitsgruppen von Dominik Marx und Stefan Schlemmer von der Universität Köln im Rahmen einer langjährigen Zusammenarbeit auf (wir berichteten im Juli 2005 und März 2010: http://www.pm.ruhr-uni-bochum.de/pm2005/msg00209.htm, http://aktuell.rub.de/pm2010/msg00066.htm).

Nun wollte Marx‘ Team wissen, ob sich die Struktur unter bestimmten Bedingungen durch Anlagerung von Lösungsmittelmolekülen „einfrieren“ lässt – ein Prozess, der Mikrosolvatation heißt.

Mikrosolvatation: Anlagerung von Wasserstoffmolekülen an CH5+

Zu diesem Zweck umgaben die Chemiker das CH5+-Molekül virtuell mit einigen wenigen Wasserstoffmolekülen (H2). Dabei passiert im Ergebnis das Gleiche, wie wenn man normale Ionen in Wasser löst: An jedes Ion lagert sich eine relativ fest gebundene Hülle aus Wassermolekülen an, um anschließend einzelne Ionen mit einigen daran gebundenen Lösungsmittelmolekülen in die Gasphase zu transferieren. Um die CH5+-Wasserstoff-Komplexe zu beschreiben, reichen klassische ab initio-Molekulardynamik-Simulationen nicht aus. Denn das „hydrogen scrambling“ beruht auf Quanteneffekten. Daher nutzte Marx‘ Gruppe eine selbst entwickelte, voll quantenmechanische Methode, die sogenannten ab initio-Pfadintegralsimulationen. Mit ihr lassen sich die essenziellen Quanteneffekte abhängig von der Temperatur in die Rechnung einbeziehen.

Wasserstoffmoleküle verleihen dem CH5+-Molekül Struktur

Die Chemiker führten die Simulationen für eine Temperatur von 20 Kelvin durch; das entspricht -253 Grad Celsius. In nicht gelöster Form tauschen die Wasserstoffatome im CH5+-Molekül auch bei so niedrigen Temperaturen permanent ihre Positionen – und zwar ausschließlich aufgrund quantenmechanischer Effekte. Wenn CH5+ von Wasserstoff umgeben ist, wird das „hydrogen scrambling“ jedoch stark beeinflusst und kann sogar ganz zum Erliegen kommen: Das Molekül nimmt eine rudimentäre Struktur an. Wie genau diese aussieht, hängt davon ab, wie viele Wasserstoffmoleküle sich an ein CH5+-Molekül anlagern. „Mich interessiert nun besonders, ob superflüssiges Helium – ähnlich wie hier der Wasserstoff – auch die Wanderung der Wasserstoffe im CH5+ stoppen kann“, sagt Marx. Experimentell arbeitende Forscher nutzen superflüssiges Helium, um hochaufgelöste Spektren von darin eingelagerten Molekülen zu messen. Für CH5+ ist das bislang aber nicht möglich ist. In der superflüssigen Phase sind die Heliumatome allerdings aufgrund quantenstatistischer Effekte nicht unterscheidbar. Um diese Tatsache beschreiben zu können, entwickelten die Theoretischen Chemiker an der RUB über viele Jahre hinweg eine neue, noch aufwändigere pfadintegralbasierte Simulationsmethode, die seit kurzem auch auf reale Fragestellungen angewendet wird.

Förderung

Die Einflüsse der Mikrosolvatation auf kleine Moleküle in der Gasphase und in Heliumtröpfchen erforschen Wissenschaftler an der RUB im Exzellenzcluster „Ruhr Explores Solvation“ RESOLV (EXC 1069), das die Deutsche Forschungsgemeinschaft im Juni 2012 genehmigte.

Titelaufnahme

A. Witt, S. Ivanov, D. Marx (2013): Microsolvation-Induced Quantum Localization in Protonated Methane, Physical Review Letters, doi: 10.1103/PhysRevLett.110.083003

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083, E-Mail: dominik.marx@rub.de

Angeklickt

Animationen und Hintergrundinformationen zu reinem CH5+
http://www.theochem.rub.de/go/ch5p.html
Solvation Science@RUB (RESOLV)
http://www.rub.de/solvation/
Theoretische Chemie an der RUB
http://www.theochem.rub.de
Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit