Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemisches Chamäleon gebändigt: Wandelbares Molekül erhält Struktur durch Lösungsmitteleffekte

14.03.2013
Computersimulationen zeigen: Protoniertes Methan wird durch Mikrosolvatation gezähmt

Wie man das Chamäleon unter den Molekülen dazu bekommt, sich auf ein bestimmtes „Aussehen“ festzulegen, haben RUB-Chemiker um Professor Dominik Marx herausgefunden. Das Molekül CH5+ ist normalerweise nicht durch eine einzige starre Struktur zu beschreiben, sondern dynamisch flexibel.


Dem „Chamäleon-Molekül“ Struktur verleihen: Je nachdem, wie viele H2-Lösungsmittelmoleküle (blau) sich an das CH5+-Molekül anlagern, verändert sich der Bereich, in dem sich die Wasserstoffe des CH5+-Moleküls bewegen (rot); seine Struktur wird also teilweise „eingefroren“. Die Flächen repräsentieren quantenmechanische Aufenthaltswahrscheinlichkeitsdichten bei einer Temperatur von 20 Kelvin.
Grafik: A. Witt, S. Ivanov, D. Marx

Mit Computersimulationen zeigte das Team vom Lehrstuhl für Theoretische Chemie, dass CH5+ eine bestimmte Struktur annimmt, sobald man Wasserstoffmoleküle anlagert. „Damit haben wir einen wichtigen Schritt getan, um in Zukunft experimentelle Schwingungsspektren zu verstehen“, sagt Dominik Marx. Die Forscher berichten in der Zeitschrift „Physical Review Letters“.

Im CH5+-Molekül sind die Wasserstoffatome permanent auf Wanderschaft

Die Supersäure CH5+, auch protoniertes Methan genannt, kommt im Weltall vor – dort, wo sich neue Sterne bilden. Forscher entdeckten das Molekül schon in den 1950er-Jahren, doch viele seiner Eigenschaften sind nach wie vor unbekannt. Anders als herkömmliche Moleküle, in denen alle Atome eine feste Position besitzen, bewegen sich die fünf Wasserstoffatome in CH5+ ständig um das Kohlenstoffzentrum. Wissenschaftler sprechen von „hydrogen scrambling“. Diese dynamisch flexible Struktur klärten die Arbeitsgruppen von Dominik Marx und Stefan Schlemmer von der Universität Köln im Rahmen einer langjährigen Zusammenarbeit auf (wir berichteten im Juli 2005 und März 2010: http://www.pm.ruhr-uni-bochum.de/pm2005/msg00209.htm, http://aktuell.rub.de/pm2010/msg00066.htm).

Nun wollte Marx‘ Team wissen, ob sich die Struktur unter bestimmten Bedingungen durch Anlagerung von Lösungsmittelmolekülen „einfrieren“ lässt – ein Prozess, der Mikrosolvatation heißt.

Mikrosolvatation: Anlagerung von Wasserstoffmolekülen an CH5+

Zu diesem Zweck umgaben die Chemiker das CH5+-Molekül virtuell mit einigen wenigen Wasserstoffmolekülen (H2). Dabei passiert im Ergebnis das Gleiche, wie wenn man normale Ionen in Wasser löst: An jedes Ion lagert sich eine relativ fest gebundene Hülle aus Wassermolekülen an, um anschließend einzelne Ionen mit einigen daran gebundenen Lösungsmittelmolekülen in die Gasphase zu transferieren. Um die CH5+-Wasserstoff-Komplexe zu beschreiben, reichen klassische ab initio-Molekulardynamik-Simulationen nicht aus. Denn das „hydrogen scrambling“ beruht auf Quanteneffekten. Daher nutzte Marx‘ Gruppe eine selbst entwickelte, voll quantenmechanische Methode, die sogenannten ab initio-Pfadintegralsimulationen. Mit ihr lassen sich die essenziellen Quanteneffekte abhängig von der Temperatur in die Rechnung einbeziehen.

Wasserstoffmoleküle verleihen dem CH5+-Molekül Struktur

Die Chemiker führten die Simulationen für eine Temperatur von 20 Kelvin durch; das entspricht -253 Grad Celsius. In nicht gelöster Form tauschen die Wasserstoffatome im CH5+-Molekül auch bei so niedrigen Temperaturen permanent ihre Positionen – und zwar ausschließlich aufgrund quantenmechanischer Effekte. Wenn CH5+ von Wasserstoff umgeben ist, wird das „hydrogen scrambling“ jedoch stark beeinflusst und kann sogar ganz zum Erliegen kommen: Das Molekül nimmt eine rudimentäre Struktur an. Wie genau diese aussieht, hängt davon ab, wie viele Wasserstoffmoleküle sich an ein CH5+-Molekül anlagern. „Mich interessiert nun besonders, ob superflüssiges Helium – ähnlich wie hier der Wasserstoff – auch die Wanderung der Wasserstoffe im CH5+ stoppen kann“, sagt Marx. Experimentell arbeitende Forscher nutzen superflüssiges Helium, um hochaufgelöste Spektren von darin eingelagerten Molekülen zu messen. Für CH5+ ist das bislang aber nicht möglich ist. In der superflüssigen Phase sind die Heliumatome allerdings aufgrund quantenstatistischer Effekte nicht unterscheidbar. Um diese Tatsache beschreiben zu können, entwickelten die Theoretischen Chemiker an der RUB über viele Jahre hinweg eine neue, noch aufwändigere pfadintegralbasierte Simulationsmethode, die seit kurzem auch auf reale Fragestellungen angewendet wird.

Förderung

Die Einflüsse der Mikrosolvatation auf kleine Moleküle in der Gasphase und in Heliumtröpfchen erforschen Wissenschaftler an der RUB im Exzellenzcluster „Ruhr Explores Solvation“ RESOLV (EXC 1069), das die Deutsche Forschungsgemeinschaft im Juni 2012 genehmigte.

Titelaufnahme

A. Witt, S. Ivanov, D. Marx (2013): Microsolvation-Induced Quantum Localization in Protonated Methane, Physical Review Letters, doi: 10.1103/PhysRevLett.110.083003

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083, E-Mail: dominik.marx@rub.de

Angeklickt

Animationen und Hintergrundinformationen zu reinem CH5+
http://www.theochem.rub.de/go/ch5p.html
Solvation Science@RUB (RESOLV)
http://www.rub.de/solvation/
Theoretische Chemie an der RUB
http://www.theochem.rub.de
Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften