Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemischer Signalfilter im Gehirn entdeckt

15.07.2009
Neue Ansätze in der Therapieentwicklung für Alzheimer oder Schizophrenie möglich

Der Beginn einer Alzheimer-Erkrankung geht mit einem Mangel an der chemischen Substanz Acetylcholin einher. Daher ist es wichtig, genau zu verstehen, wie diese Substanz im Gehirn wirkt.

Genau bei dieser Frage sind Prof. Dirk Feldmeyer vom Forschungszentrum Jülich und Dr. Emmanuel Eggermann, Universität Freiburg, jetzt einen wichtigen Schritt vorangekommen. Sie haben entdeckt, dass - anders als bisher gedacht - Acetylcholin im Gehirn nicht bei allen Nervenzellen für eine verstärkte Signalübertragung sorgt.

Im Gegenteil: In der vierten Schicht der Großhirnrinde übernimmt Acetylcholin ausschließlich die Funktion, die Nervenzellen zu hemmen. Ihre Ergebnisse wurden soeben in "Proceedings of the National Academy of Sciences of the USA" (PNAS) veröffentlicht.

Die beiden Forscher konzentrierten ihre Untersuchungen an Rattenhirnen auf die vierte Zellenschicht der Großhirnrinde, weil diese eine Schlüsselrolle in der Signalverarbeitung von Sinneseindrücken einnimmt. Die erregenden Nervenzellen dieser Schicht (L4-Neuronen) bilden das "Eingangstor" zum Großhirn für Signale, die aus dem Thalamus kommen. Der Thalamus ist der Gehirnteil, bei dem alle Informationen aus dem Körper und den Sinnesorganen eingehen. Erregende Nervenzellen machen 80 Prozent aller Neurone aus. Sie können an andere Nervenzellen ein chemisches Signal weitergeben, das diese zu einer verstärkten Aktivität und somit wiederum zur Signalfortleitung veranlasst.

Die L4-Neuronen geben ihre Signale nicht nur an andere Zellschichten der Großhirnrinde weiter, sondern in einer Rückkopplungsschleife auch an sich selbst zurück. Deshalb gingen viele Forscher bisher davon aus, dass die Hauptaufgabe der L4-Neuronen darin besteht, die aus dem Thalamus eingehenden Signale zu verstärken. Unabhängig davon deuteten alle bisherigen Untersuchungen darauf hin, dass Acetylcholin im Großhirn für eine Verstärkung der Signalübertragung zwischen allen erregenden Nervenzellen sorgt. Denn im Wachzustand und insbesondere während Phasen erhöhter Aufmerksamkeit steigt die Acetylcholin-Konzentration im Gehirn an. Jedoch war bis jetzt die Wirkung von Acetylcholin speziell auf die L4-Neuronen nie untersucht worden.

Eggermann und Feldmeyer haben dies nun getan und erhielten ein überraschendes Ergebnis: Bei den erregenden Neuronen der Schicht 4 des Großhirns wird die Signalübertragung durch Acetylcholin nicht verstärkt, sondern im Gegenteil gehemmt. Gleichzeitig konnten die beiden Forscher aber bestätigen, dass Acetylcholin die Signalübertragung zwischen den erregenden Nervenzellen der anderen Schichten verstärkt.

Demnach muss die Wirkung des Acetylcholins im Gehirn weitaus differenzierter betrachtet werden als bislang geschehen. Eggermann und Feldmeyer schließen aus ihren Ergebnissen, dass die Hauptaufgabe der erregenden L4-Neuronen keine Verstärkung, sondern im Gegenteil eine Ausfilterung schwacher Thalamus-Signale ist. Die von den L4-Neuronen weitergeleiteten Signale werden aber anschließend durch die Wirkung des Acetylcholins verstärkt. Die Forscher glauben, dass diese Anordnung den Zweck hat, das Signal-Rausch-Verhältnis zu verbessern - also dafür zu sorgen, dass die im Großhirn erwünschten Informationen nicht von Störsignalen überdeckt werden.

In weiteren Versuchsreihen konnten Feldmeyer und Eggermann klären, warum Acetylcholin auf die L4-Zellen eine andere Wirkung hat als auf die Zellen der übrigen Schichten in der Großhirnrinde. In letzteren wird das Acetylcholin von dem Subtyp M1 des sogenannten Muskarinischen Acetylcholinrezeptors an die Zellen gebunden. Durch Zugabe der Substanz Tropicamid, die auch in Augentropfen enthalten ist, konnten die beiden Forscher jedoch nachweisen, dass Acetylcholin bei den L4-Neuronen an den Subtyp M4 gebunden wird. Denn Tropicamid besetzt den M4-Rezeptor und blockiert so die Wirkung von Acetylcholin.

Die Entdeckung von Eggermann und Feldmeyer könnte möglicherweise einen neuen Ansatzpunkt zur Entwicklung von Therapien für Gehirnerkrankungen liefern, die mit einer Fehlfunktion in der Acetylcholin-Ausschüttung einhergehen - wie beispielsweise Alzheimer oder Schizophrenie. Denn entgegen der bisherigen Annahme sind verschiedene Rezeptoren beteiligt, die von neuen Therapien vielleicht gezielt beeinflusst werden könnten. Der Weg von der Grundlagenforschung bis zu einer möglichen Therapie ist jedoch weit.

Paper:
http://www.pnas.org/content/early/2009/06/26/0810062106
Ansprechpartner:
Prof. Dirk Feldmeyer
Tel.: 02461 61-5226
d.feldmeyer@fz-juelich.de
Pressekontakt:
Stefanie Tyroller
Pressereferentin
Tel.: 02461 61-8031
s.tyroller@fz-juelich.de
Dr. Anne Rother
Leiterin Unternehmenskommunikation
Tel.: 02461 61-6441
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Stefanie Tyroller | Forschungszentrum Juelich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie