Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemischer Schlüssel für Zellteilung gefunden

06.12.2012
Neue Behandlungsansätze für Krebs und andere Krankheiten

In jeder Zelle ist das genetische Material sicher im Kern verpackt, der durch eine Doppelmembran geschützt ist. Die Biochemie, die hinter der Veränderung dieser Membran steht, wenn sich Zellen teilen, haben jetzt Wissenschaftler des Cancer Research UK's London Research Institute entschlüsselt. Damit könnten neue Möglichkeiten zur Behandlung von Krebs und seltener genetisch bedingter Erkrankungen gefunden werden, berichtet der New Scientist.


Zellteilung: Geheimnis gelüftet (Foto: meiosis-and-mitosis.pbworks.com)

Mechanismen bisher unbekannt

Während der Zellteilung wird die Membran, die den Kern umgibt, abgebaut und formt sich in zwei neue Zellen um. Die Wissenschaft war sich über die genauen Mechanismen, die hinter diesem Vorgang stehen, bislang nicht einig. Ein Ansatz geht davon aus, dass Proteine allein die Veränderungen der Membran steuern. Eine andere Theorie nimmt an, dass es zu einer entscheidenden Veränderung bei den Lipiden kommt. Bisher ist es selbst mit Experimenten nicht gelungen herauszufinden, welche dieser beiden Vorstellungen die richtige ist. Eine Veränderung der Lipidwerte in bestimmten Bereichen der Zelle war nicht möglich, ohne andere Vorgänge zu beeinflussen.

Das Team um Banafshe Larijani hat es nun geschafft, diese Hürde zu überwinden. Die Wissenschaftler haben ein Verfahren entwickelt, das eine Art von Lipiden, das Diacylglycerol (DAG), in ein anderes Lipid innerhalb der Zellmembran verwandeln kann. Teil des Verfahrens ist es, zwei DNA-Fragmente in den Kern einer Zelle einzubringen. Die Zelle bildet in der Folge zwei Proteine: Das erste bindet sich an die Membran an, das zweite bewegt sich frei in der Zelle. Durch das Hinzufügen des Medikaments Rapalogue verband sich das zweite Protein mit dem ersten. Dadurch wurde in einem nächsten Schritt eine chemische Kaskade ausgelöst, die das DAG in eine andere Art von Lipid verwandelte.

Entscheidend dabei ist, dass die Forscher auf eine Art von DAG abzielten, die sich nicht an Proteine anbindet. Daher hat die Verwandlung in ein anderes Lipid auch keine Auswirkungen auf Vorgänge in der Zelle, an denen Proteine beteiligt sind. Das Team testete die Auswirkungen dieser Lipid-Manipulation auf die Zellteilung an Affen und menschlichen Krebszellen. Je geringer der DAG-Wert in der Kernmembran ist, desto deutlicher ist auch die Wahrscheinlichkeit einer Fehlbildung der Membran und damit eines Zelltodes. Damit ist nachgewiesen, dass Lipide eine Rolle bei der Umformung der Membran des Zellkerns spielen, die nicht von Proteinen abhängig ist.

Neue Krebs-Therapie in Aussicht

Larijani geht davon aus, dass damit eine neue Möglichkeit entstanden ist, Krebszellen durch die Konzentration auf Lipide abzutöten, die für die Entwicklung der Membran des Zellkerns von entscheidender Bedeutung sind. Teilt sich der Kern, bewegen sich Fragmente der Membran, die in ihrer Form an Würste erinnern, frei in der Zelle. Diese Fragmente verfügen über gebogene Enden. Die Wissenschaftlerin betont, dass diese Kurven durch die Veränderung in der Lipid-Zusammensetzung entstehen. Ohne diese Kurven können die Fragmente sich nicht wieder richtig zu neuen Membranen zusammenfügen.

Mehr als einem Dutzend seltener genetisch bedingter Erkrankungen wie das Hutchinson-Gilford-Progerie-Syndrom wurden mit Unregelmäßgkeiten in der Zellteilung in Zusammenhang gebracht. Neues Wissen über die Art und Weise, wie sich die Kernmembrane bei der Zellteilung bilden, könnte auch neue Behandlungsmöglichkeiten für diese Krankheiten bieten. Zusätzlich liefern diese Forschungsergebnisse ein neues Ziel für das Verhindern der unregelmäßigen Zellteilung, die vielen Arten von Krebs zugrunde liegt. Details der Studie wurden im Fachmagazin PLoS ONE http://plosone.org veröffentlicht.

Michaela Monschein | pressetext.redaktion
Weitere Informationen:
http://www.london-research-institute.org.uk

Weitere Berichte zu: Kernmembran Krebszelle Lipid droplets Membran Protein Zelle Zellkern Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops