Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Stabilität mit der Kraft des Geckos

15.09.2011
Van-der-Waals-Kräfte halten extrem lange Molekül-Bindungen zusammen – „Nature“-Veröffentlichung Gießener Forscher

Der Gecko macht es vor: Ohne Saugnäpfe, nur mit unzähligen winzigen Härchen an seinen Füßen kann er an spiegelglatten Oberflächen haften. Möglich machen dies die so genannten van-der-Waals-Kräfte, die unter dem Grundsatz „Stoffe ziehen sich immer an“ für das Zusammenhalten von Gasen und anderen Stoffen sorgen.


Van-der-Waals-Kräfte halten nicht nur den Gecko senkrecht, sondern auch Moleküle zusammen. Foto: animals-digital / Thomas Brodmann

Diese „Dispersionswechselwirkungen“ sind aber einzeln genommen schwach und lassen sich deshalb nur schlecht direkt bei chemischen Verbindungen berücksichtigen. Erstmals wurde jetzt aber nachgewiesen, dass die van-der-Waals-Kräfte sogar extrem lange (und deshalb eigentlich schwache) Bindungen zwischen Kohlenstoffmolekülen stabilisieren können. Die Forschungsergebnisse der Arbeitsgruppe um den Gießener Chemiker Prof. Dr. Peter R. Schreiner sind in der aktuellen Ausgabe des Forschungsmagazins „Nature“ veröffentlicht.

In der Strukturchemie geht man davon aus, dass kurze Bindungen zwischen Atomen besonders stark sind und lange besonders schwach. So haben typische Kohlenstoff-Kohlenstoff-Bindungen eine durchschnittliche Länge von 154 Pikometern (ein Pikometer ist der billionste Teil eines Meters). Es ist äußerst schwer, C–C-Bindungen von mehr als 165 Pikometern Länge herzustellen. Solche Strukturen sind instabil und zerfallen schnell. Den Gießener Chemikern ist es aber gelungen, sehr stabile Moleküle mit Bindungslängen von über 170 Pikometern zu synthetisieren.

Diese Ergebnisse haben Bedeutung für die molekulare Erkennung, die Enzymkatalyse, neue Materialien und für das gezielte Design neuer chemischer Strukturen, die bis dato unerreichbar schienen – wie zum Beispiel Materialien, die auch ohne Klebstoff zusammengehalten werden. Denkbar wären Anwendungen in der Nanotechnologie, aber auch in der Medizin. Derzeit sucht die Wissenschaft bereits nach Möglichkeiten, die Gecko-Kräfte für den Menschen nutzbar zu machen. So ist beispielsweise ein „Gecko-Tape“ in der Entwicklung, das wie ein Klebeband funktioniert.

Die Arbeit der Gießener Forscher beschreibt, dass vermeintlich instabile Moleküle durch Dispersionskräfte äußert stabil werden können. Dazu benutzen die Chemiker sogenannte „Nanodiamanten“, also diamantartige Moleküle von der Größe weniger Nanometer, die aus Rohöl in großen Mengen zugänglich sind. Da perfekte Nanodiamanten extrem glatt und flach sind, bestand die Idee darin, zwei Nanodiamanten miteinander zu verknüpfen, um die Dispersionskräfte zwischen ihren Oberflächen maximal auszunutzen.

Diese Moleküle ließen sich unerwartet leicht herstellen und strukturell sehr genau charakterisieren. Die Hoffnungen auf lange Bindungen zwischen den Nanodiamant-Bausteinen wurden übertroffen: Das größte Molekül weist eine C–C-Einfachbindung jenseits der Grenze von 170 Pikometern auf. Dies ist die längste jemals in einem gesättigten Kohlenwasserstoff gefundene C–C Bindung. Trotzdem sind diese Verbindungen äußerst stabil. Sie zersetzen sich erst nach mehrstündiger Erwärmung auf über 250 Grad Celsius. Die hohe Stabilität der Zielverbindungen geht einzig und allein auf die Dispersionskräfte zurück, wie die Autoren mit quantenmechanischen Berechnungen zeigen.

Die Arbeiten wurden durch Drittmittel der Deutschen Forschungsgemeinschaft (DFG) und durch das U.S. Department of Energy gefördert. Mit der Veröffentlichung kann die Arbeitsgruppe um Prof. Schreiner sich bereits über den zweiten großen Erfolg innerhalb weniger Wochen freuen: Erst im Juni waren Ergebnisse der Forscher im Magazin „Science“ veröffentlicht worden.

Publikation:
Peter R. Schreiner, Lesya V. Chernish, Pavel A. Gunchenko, Evgeniya Yu. Tikhonchuk, Heike Hausmann, Michael Serafin, Sabine Schlecht, Jeremy E. P. Dahl, Robert M. K. Carlson, Andrey A. Fokin: Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces, pp 308-311, Nature 2011, 477 (7364)

DOI: 10.1038/nature10367

Kontakt:
Prof. Dr. Peter R. Schreiner, Institut für Organische Chemie,
Heinrich-Buff-Ring 58, 35392 Gießen
Telefon: 0641 99-44300

Lisa Dittrich | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nature10367
http://www.uni-giessen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics