Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt

18.02.2014
In einem winzigen Tröpfchen könnte in Zukunft ein ganzes Chemie-Labor Platz finden.

Eine Gruppe von Wissenschaftlern des Exzellenzclusters Nanosystems Initiative Munich (NIM) ist es gelungen, in einem einfachen Modell einer künstlichen Zelle erstmals ein komplexes biochemisches System zu etablieren und zu untersuchen. Dabei entdeckten sie eine überraschende Vielfalt.


Mikrometer kleine Tröpfchen einer Emulsion bilden die Reaktionsgefäße für eine komplexe, oszillierende Reaktion

Bild: Maximilian Weitz, TUM

In einer biologischen Zelle laufen schier unendlich viele komplexe und miteinander verknüpfte Reaktionen ab. Um solche Netzwerke besser untersuchen zu können, versuchen Wissenschaftler um Professor Friedrich Simmel, Inhaber des Lehrstuhls für Bioelektronik der Technischen Universität München (TUM), sie mit den nötigen Komponenten in einer Art künstlichen Zelle nachzubauen. Dahinter steht zudem die Überlegung, solche Ein-Zell-Systeme in Zukunft beispielsweise als „Nanofabriken“ für die Herstellung komplizierter organischer Substanzen oder Biomaterialien zu nutzen.

Bisher funktionierten solche Versuche allerdings überwiegend nur mit sehr einfachen Reaktionen. Das Team um Professor Friedrich Simmel hat jetzt erstmals eine komplexere biochemische Reaktion in nur wenige Mikrometer kleinen Tröpfchen untersucht. Gemeinsam mit Kooperationspartnern von der University of California Riverside und vom California Institute of Technology in Pasadena, USA, präsentieren die Wissenschaftler ihre Ergebnisse in der aktuellen Ausgabe von Nature Chemistry.

Mit einmal Schütteln tausend Experimente

Für das Experiment gaben sie eine wässrige Reaktionslösung in Öl und schüttelten den Ansatz kräftig, so dass eine Emulsion mit Tausenden kleiner Tröpfchen entstand. Mit winzigen Mengen Material können sie so günstig und schnell eine extrem große Zahl paralleler Versuche gleichzeitig ansetzen.

Als Testsystem wählten die Forscher einen sogenannten biochemischen Oszillator. Dabei handelt es sich um mehrere Reaktionen mit DNA und RNA, die periodisch immer wieder hintereinander ablaufen. Ihr Rhythmus wird dadurch erkennbar, dass sich in einem Schritt zwei DNA-Stränge so aneinander lagern, dass ein Fluoreszenzfarbstoff leuchtet. Dieses gleichmäßige Blinken zeichnen die Wissenschaftler mit einer speziellen Kamera auf.

Kleine Tropfen – große Unterschiede

Mit ihrer Arbeit wollten Friedrich Simmel und seine Kollegen zunächst grundsätzlich untersuchen, wie sich ein komplexes Reaktionssystem verhält, wenn es auf Zellgröße herunterskaliert wird. Konkret stellten sie zudem die Frage, ob sich alle Tropfen-Systeme gleich verhalten und wodurch mögliche Unterschiede verursacht werden.

Ihre Versuche zeigten, dass die Oszillationen in den einzelnen Tröpfchen stark voneinander abwichen, und zwar stärker, als dies nach einem einfachen statistischen Modell zu erwarten gewesen wäre. Deutlich wurde vor allem, dass kleine Tropfen sich stärker unterschieden als große. „Es ist zunächst überraschend, in einem noch vergleichsweise einfachen chemischen System ähnliche Variabilität und Individualität zu beobachten, wie man dies sonst eher von biologischen Zellen her kennt“, erläutert Friedrich Simmel die Ergebnisse.

Exakt gleiche Systeme lassen sich so derzeit also nicht realisieren. Für die Praxis bedeutet das, entweder nach Möglichkeiten zu suchen, um diese Schwankungen zu korrigieren oder sie von vornherein mit einzukalkulieren. Darüber hinaus lassen sich die vielen leicht unterschiedlichen Systeme auch gezielt dazu nutzen, aus Tausenden von Ansätzen einen optimal laufenden herauszusuchen.

Die Forschung an komplexen biosynthetischen Systemen in künstlichen Zellen hält eine Menge weiterer Fragen bereit. Friedrich Simmel möchte sich in einem der nächsten Schritte den theoretischen Modellen dahinter widmen: „Es ist uns mit dieser Arbeit gelungen, über die hochparallele Aufnahme der Emulsionströpfchen zahlreiche interessante Daten zu gewinnen. Unser Ziel ist es nun, mit deren Hilfe die theoretischen Modelle von biochemischen Reaktionsnetzwerken bei kleinen Molekülzahlen zu überprüfen und zu verbessern.“

Die Arbeiten wurden unterstützt aus Mitteln der National Science Foundation (USA), der Europäischen Kommission, der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich) sowie des Bayerischen Elitenetzwerks.

Publikation:

“Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator.” Maximilian Weitz, Jongmin Kim, Korbinian Kapsner, Erik Winfree, Elisa Franco, Friedrich C. Simmel. Nature Chemistry, Advance Online Publication: 16 February 2014. DOI: 10.1038/nchem.1869

Kontakt:

Prof. Dr. Friedrich C. Simmel
Technische Universität München
Lehrstuhl für Bioelektronik – Systems Biophysics and Bionanotechnology
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11612 – E-Mail: simmel@ph.tum.de
Internet: http://www.e14.ph.tum.de/
Weitere Informationen:
http://www.nature.com/nchem/journal/vaop/ncurrent/extref/nchem.1869-s3.mov
Video
http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1869.html Publikation

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.e14.ph.tum.de/
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics