Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Reaktionen in zellähnlichen Systemen liefern überraschende Vielfalt

18.02.2014
In einem winzigen Tröpfchen könnte in Zukunft ein ganzes Chemie-Labor Platz finden.

Eine Gruppe von Wissenschaftlern des Exzellenzclusters Nanosystems Initiative Munich (NIM) ist es gelungen, in einem einfachen Modell einer künstlichen Zelle erstmals ein komplexes biochemisches System zu etablieren und zu untersuchen. Dabei entdeckten sie eine überraschende Vielfalt.


Mikrometer kleine Tröpfchen einer Emulsion bilden die Reaktionsgefäße für eine komplexe, oszillierende Reaktion

Bild: Maximilian Weitz, TUM

In einer biologischen Zelle laufen schier unendlich viele komplexe und miteinander verknüpfte Reaktionen ab. Um solche Netzwerke besser untersuchen zu können, versuchen Wissenschaftler um Professor Friedrich Simmel, Inhaber des Lehrstuhls für Bioelektronik der Technischen Universität München (TUM), sie mit den nötigen Komponenten in einer Art künstlichen Zelle nachzubauen. Dahinter steht zudem die Überlegung, solche Ein-Zell-Systeme in Zukunft beispielsweise als „Nanofabriken“ für die Herstellung komplizierter organischer Substanzen oder Biomaterialien zu nutzen.

Bisher funktionierten solche Versuche allerdings überwiegend nur mit sehr einfachen Reaktionen. Das Team um Professor Friedrich Simmel hat jetzt erstmals eine komplexere biochemische Reaktion in nur wenige Mikrometer kleinen Tröpfchen untersucht. Gemeinsam mit Kooperationspartnern von der University of California Riverside und vom California Institute of Technology in Pasadena, USA, präsentieren die Wissenschaftler ihre Ergebnisse in der aktuellen Ausgabe von Nature Chemistry.

Mit einmal Schütteln tausend Experimente

Für das Experiment gaben sie eine wässrige Reaktionslösung in Öl und schüttelten den Ansatz kräftig, so dass eine Emulsion mit Tausenden kleiner Tröpfchen entstand. Mit winzigen Mengen Material können sie so günstig und schnell eine extrem große Zahl paralleler Versuche gleichzeitig ansetzen.

Als Testsystem wählten die Forscher einen sogenannten biochemischen Oszillator. Dabei handelt es sich um mehrere Reaktionen mit DNA und RNA, die periodisch immer wieder hintereinander ablaufen. Ihr Rhythmus wird dadurch erkennbar, dass sich in einem Schritt zwei DNA-Stränge so aneinander lagern, dass ein Fluoreszenzfarbstoff leuchtet. Dieses gleichmäßige Blinken zeichnen die Wissenschaftler mit einer speziellen Kamera auf.

Kleine Tropfen – große Unterschiede

Mit ihrer Arbeit wollten Friedrich Simmel und seine Kollegen zunächst grundsätzlich untersuchen, wie sich ein komplexes Reaktionssystem verhält, wenn es auf Zellgröße herunterskaliert wird. Konkret stellten sie zudem die Frage, ob sich alle Tropfen-Systeme gleich verhalten und wodurch mögliche Unterschiede verursacht werden.

Ihre Versuche zeigten, dass die Oszillationen in den einzelnen Tröpfchen stark voneinander abwichen, und zwar stärker, als dies nach einem einfachen statistischen Modell zu erwarten gewesen wäre. Deutlich wurde vor allem, dass kleine Tropfen sich stärker unterschieden als große. „Es ist zunächst überraschend, in einem noch vergleichsweise einfachen chemischen System ähnliche Variabilität und Individualität zu beobachten, wie man dies sonst eher von biologischen Zellen her kennt“, erläutert Friedrich Simmel die Ergebnisse.

Exakt gleiche Systeme lassen sich so derzeit also nicht realisieren. Für die Praxis bedeutet das, entweder nach Möglichkeiten zu suchen, um diese Schwankungen zu korrigieren oder sie von vornherein mit einzukalkulieren. Darüber hinaus lassen sich die vielen leicht unterschiedlichen Systeme auch gezielt dazu nutzen, aus Tausenden von Ansätzen einen optimal laufenden herauszusuchen.

Die Forschung an komplexen biosynthetischen Systemen in künstlichen Zellen hält eine Menge weiterer Fragen bereit. Friedrich Simmel möchte sich in einem der nächsten Schritte den theoretischen Modellen dahinter widmen: „Es ist uns mit dieser Arbeit gelungen, über die hochparallele Aufnahme der Emulsionströpfchen zahlreiche interessante Daten zu gewinnen. Unser Ziel ist es nun, mit deren Hilfe die theoretischen Modelle von biochemischen Reaktionsnetzwerken bei kleinen Molekülzahlen zu überprüfen und zu verbessern.“

Die Arbeiten wurden unterstützt aus Mitteln der National Science Foundation (USA), der Europäischen Kommission, der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich) sowie des Bayerischen Elitenetzwerks.

Publikation:

“Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator.” Maximilian Weitz, Jongmin Kim, Korbinian Kapsner, Erik Winfree, Elisa Franco, Friedrich C. Simmel. Nature Chemistry, Advance Online Publication: 16 February 2014. DOI: 10.1038/nchem.1869

Kontakt:

Prof. Dr. Friedrich C. Simmel
Technische Universität München
Lehrstuhl für Bioelektronik – Systems Biophysics and Bionanotechnology
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11612 – E-Mail: simmel@ph.tum.de
Internet: http://www.e14.ph.tum.de/
Weitere Informationen:
http://www.nature.com/nchem/journal/vaop/ncurrent/extref/nchem.1869-s3.mov
Video
http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1869.html Publikation

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.e14.ph.tum.de/
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie