Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Reaktionen in Blasenströmungen

18.09.2014

Medikamente, Kunststoffe, Grundchemikalien: Blasenströmungen werden zur Herstellung vieler Produkte aus unserem Alltag eingesetzt – und sie bergen noch viel Potenzial.

Von der Technischen Universität Hamburg (TUHH) initiiert, fördert die Deutsche Forschungsgemeinschaft (DFG) seit diesem Sommer das Schwerpunktprogramm „Einfluss lokaler Transportprozesse auf chemische Reaktionen in Blasenströmungen“.


Forschen gemeinsam: Die Wissenschaftlerinnen und Wissenschaftler des SPP 1740.

Daniel Bezecny

Für das Programm SPP 1740 stellt die DFG insgesamt rund 10 Millionen Euro zur Verfügung. Wissenschaftlerinnen und Wissenschaftler forschen an 13 Standorten in Deutschland zu 19 ausgewählten Einzelprojekten. Professor Michael Schlüter, Leiter des Instituts für Mehrphasenströmungen, ist Koordinator des Programms.

Gasbläschen steigen in einer Flüssigkeit auf. Was an ein Glas mit sprudelndem Mineralwasser erinnert, ist ein in der Industrie häufig eingesetzter Reaktortyp – eine Blasensäule. Als Laborapparat, große Technikumssäule oder Anlage mit bis zu 9m Durchmesser und 20m Höhe sind sie in der chemischen Industrie zu finden. An den Grenzschichten der Blasen entstehen beispielsweise durch Oxidation neue Produkte, die Ausgangsstoffe für zahlreiche Gegenstände aus unserem Alltag sind.

Da die Dosierung der Blasen schwer kontrollierbar und der Zusammenhang zwischen Strömung und Reaktion noch weitgehend unbekannt ist, entstehen neben dem Zielprodukt auch viele unerwünschte Nebenprodukte.

Hierdurch werden derzeit unnötig viele Ressourcen verbraucht und große Mengen Abwasser und Abfall fallen an. Ziel der rund 40 Wissenschaftlerinnen und Wissenschaftler ist daher die Aufklärung der Zusammenhänge zwischen Strömung und Reaktion, um künftig nachhaltigere Prozesse gestalten zu können.

Am 15. September versammelten sich die Forscherinnen und Forscher zu einem ersten Treffen, um sich gegenseitig vorzustellen und die geförderten Projekte zu vernetzen. Im Anschluss an dieses Kick-Off-Meeting fand vom 16. bis 17. September eine Summer School für die Nachwuchswissenschaftlerinnen und -wissenschaftler des Schwerpunktprogramms statt, um sie optimal auf ihre Promotion in diesem Bereich vorzubereiten.

Das SPP 1740 soll für sechs Jahre durch die DFG gefördert werden und ist eines von insgesamt drei Schwerpunktprogrammen, die derzeit im Dekanat Verfahrenstechnik koordiniert werden.

Weitere Informationen: http://www.dfg-spp1740.de/ und http://www.ims-tuhh.de/

Ansprechpartner
Prof. Dr.-Ing. Michael Schlüter
Institut für Mehrphasenströmungen
Technische Universität Hamburg-Harburg
Eißendorfer Straße 38 (O), Raum 109
21073 Hamburg
Tel.: +49 40 42878 3252
E-Mail: michael.schlueter@tuhh.de

Weitere Informationen:

http://intranet.tuhh.de/aktuell/pressemitteilung_einzeln.php?id=9637&Lang=de
http://www.dfg-spp1740.de/ und http://www.ims-tuhh.de/

Rüdiger Bendlin | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie