Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemiker der Saar-Uni sind am Projektverbund zur atomaren Endlagerforschung beteiligt

27.02.2012
In Deutschland und vielen anderen Ländern ist man auf der Suche nach einem geeigneten unterirdischen Lager, in dem hochradioaktive Abfälle für Hunderttausende von Jahren sicher aufbewahrt werden können.

In verschiedenen Forschungsprojekten werden derzeit analytische Methoden und Werkzeuge entwickelt, um zu klären, welche Tongesteine in der Lage sind, radioaktiv strahlende Materialien langfristig zurück zu halten.

Mit diesen Erkenntnissen will man dann mögliche Endlager-Standorte schneller und zuverlässiger untersuchen können. Das Bundesministerium für Wirtschaft und Technologie fördert dazu ein Forschungsprojekt an der Universität des Saarlandes mit 583.000 Euro für weitere drei Jahre.

Nach der Untersuchung des Modelltonminerals Kaolinit in vorherigen Projekten werden zurzeit natürliche Tongesteine wie Opalinuston erforscht. Dabei wird überprüft, ob sich diese als Wirtsgestein oder als geologische Barriere eines zukünftigen Endlagers für hochradioaktive Abfälle eignen. „Dabei soll vor allem ermittelt werden, wie sich die radioaktiven Elemente auf ihrem Weg durch das Gestein verhalten würden, wenn es zu einer Freisetzung und Ausbreitung aus dem Endlager käme“, erläutert der promovierte Chemiker Ralf Kautenburger, der für das Forschungsprojekt an der Universität des Saarlandes verantwortlich ist.

Im aktuellen Verbundprojekt, das seit Juli 2011 läuft, wird das geochemische Verhalten der Radionuklide oder ihrer chemischen Stellvertreter (Metalle der Seltenen Erden) bei höheren Ionenstärken untersucht, wie sie zum Beispiel auch in Tonformationen in Norddeutschland sowie im Salzgestein vorkommen können.

„Dabei erforschen wir, wie sich die Metalle an Tongesteine anlagern und wie sich dies je nach Ionenstärke und Umgebungstemperatur verändert“, erklärt Kautenburger. Die Chemiker in Saarbrücken gehen somit auch der Frage nach, ob die radioaktiven Zerfallsstoffe von den Gesteinen festgehalten oder in ihnen weiter transportiert werden. Kautenburger verweist darauf, dass Tongesteine auch in Frankreich und in der Schweiz als Wirtsgestein für zukünftige Endlagerstätten in Erwägung gezogen werden. Normalerweise werden Metalle vom Tongestein festgehalten. Wenn bestimmte anorganische und organische Moleküle vorkommen, kann es jedoch passieren, dass dieser Vorgang abgeschwächt wird und die Metalle im Wirtsgestein damit möglicherweise mobiler werden. „Diese natürlich vorkommenden Stoffe können je nach potentiellem Standort in unterschiedlicher Zusammensetzung und Konzentration auftreten und durch ihre Komplexierungseigenschaften die Mobilität der Radionuklide im Umfeld eines Endlagers entscheidend beeinflussen“ so Ralf Kautenburger.

Zur Untersuchung der Art der Metall-Spezies, ihrer Konzentration und ihrer Mobilität werden beispielsweise die Kapillarelektrophorese (CE) und die induktiv gekoppelte Plasma-Massenspektrometrie (ICP MS) miteinander kombiniert. Damit kann man auf detaillierte Weise auch geringste Spuren von chemischen Elementen analysieren und zum Beispiel die unterschiedlich geladenen Metall-Organik-Komplexe charakterisieren. „Die dabei gewonnenen Erkenntnisse helfen uns, das Ausbreitungsverhaltens der Schwermetalle oder auch anderer Stoffe im potentiellen Wirtsgestein eines Endlagers besser zu verstehen“, erklärt der Saarbrücker Chemiker. Damit leiste man einen Beitrag zur Langzeitsicherheitsanalyse eines möglichen Endlagers.

Im Rahmen des deutschlandweiten Verbundes zur Endlagerforschung wurden den Saarbrücker Chemikern seit dem Jahr 2006 insgesamt rund 1.280.000 Euro an Drittmitteln bewilligt. An den Forschungen sind an der Universität des Saarlandes Horst Philipp Beck, Professor für Anorganische und Analytische Chemie und Radiochemie und Guido Kickelbick, Professor für Anorganische Festkörperchemie, beteiligt. Verantwortlich für das Forschungsprojekt ist der promovierte Chemiker Ralf Kautenburger, wissenschaftlicher Mitarbeiter am Lehrstuhl für Anorganische und Analytische Chemie und Radiochemie. An dem vom Bundesministerium für Wirtschaft und Technologie geförderten Forschungsverbund sind neben der Universität des Saarlandes auch die Universitäten in Dresden, Heidelberg, Mainz, München und Potsdam sowie Forschungszentren in Dresden (Helmholtz-Zentrum Dresden-Rossendorf) und Karlsruhe (Karlsruher Institut für Technologie) beteiligt.

Vortragshinweis:

Im Rahmen seiner Umhabilitation an der Universität des Saarlandes wird Dr. Ralf Kautenburger am 7. März um 14 Uhr im Hörsaal Anorganische Chemie (Geb. C 4.3) einen wissenschaftlichen Vortrag über „Innovative Methoden zur Chemischen Speziation und Bioanalytik“ halten.

Fragen beantwortet:

PD Dr. Ralf Kautenburger
Tel: 0681 / 302-2171
Mail: r.kautenburger@mx.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.uni-saarland.de/fak8/beck/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik