Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie steuert Magnetismus

09.10.2015

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich. (DOI: 10.002/adma-201305932)

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch Strom ein Magnetfeld erzeugt, jedoch verbraucht sie durchgehend Energie. Eine andere Möglichkeit ist, einen Ferromagneten zu polarisieren, also die magnetischen Strukturen in dem Material parallel auszurichten, so dass ein Gesamt-Magnetfeld entsteht.


Mit der Ein- und Auslagerung von Lithium-Ionen in bestimmte Magneten lässt sich deren Magnetstärke gezielt steuern.

(Grafik: KIT/Wiley-VCH)

Dies benötigt zwar zum Halten des Magnetfeldes keine Energie, es ist jedoch permanent und lässt sich nur mit Aufwand aufheben. Eine andere Option ist die magnetoelektrische Kopplung, bei der ein elektrisches Feld Magnetismus induziert. Allerdings greift diese Methode häufig nur an der obersten Atomschicht des Kristallgitters, die Änderung des Magnetfeldes ist also minimal.

Das nun am KIT entwickelte chemische Verfahren zur Kontrolle des Magnetismus bietet einen neuen Ansatz, der über die zuvor beschriebenen Konzepte hinausgeht: Der Vorgang beeinflusst das gesamte Material, nicht nur die Oberfläche, und ist dabei reversibel, kann also rückgängig gemacht werden.

Zusätzlich – und das ist die wichtigste Innovation dieses Verfahrens – ist der jeweilige magnetische Zustand des Materials (magnetisch / nicht magnetisch) nicht volatil. Das heißt, der Zustand bleibt, im Gegensatz zu einer elektromagnetischen Spule, auch ohne Stromzufuhr und damit ohne kontinuierlichen Energieverbrauch aufrechterhalten.

„Tausendfache Lade- und Entladezyklen von Lithium-Ionen Akkus, wie sie etwa in Handys genutzt werden, zeigen, dass elektrochemische Vorgänge durchaus reversibel sein können. Dies brachte uns auf die Idee, ähnliche Strukturen wie Lithium-Ionen-Akkus zu erforschen“, sagt Subho Dasgupta vom Institut für Nanotechnologie des KIT. Beim Laden und Entladen eines Lithium-Ionen Akkus wandern die Ionen jeweils vom einen zum anderen Akku-Pol und lagern sich dabei in die Elektroden ein.

Die Wissenschaftler um Dasgupta haben nun einen Lithium-Ionen-Akku erstellt, bei dem eine Elektrode aus Maghemit, einem ferromagnetischen Eisenoxid (γ-Fe2O3), besteht und die andere aus reinem Lithium. Experimente zeigten, dass die Lithium-Ionen-Einlagerung in Maghemit dessen Magnetstärke reduziert, auch bei Raumtemperatur.

Durch die gezielte Steuerung der Lithium-Ionen, also durch Laden und Entladen des Akkus, lässt sich somit die Magnetfeldstärke des Maghemits kontrollieren. Dieser Effekt ist, genau wie bei normalen Lithium-Ionen-Akkus, wiederholbar.

Bei den vorgestellten Versuchen erreichten die Forscher eine Änderung der Magnetstärke um bis zu 30 Prozent. Das langfristige Ziel ist jedoch, den Magneten komplett an- und ausschalten zu können. Damit hoffen die Wissenschaftler ein Verfahren zu finden, mit dem sich ein Magnetschalter realisieren lässt, der vom Prinzip her wie ein elektrischer Transistor funktioniert: Während ein elektrischer Transistor mit einem Steuerstrom einen kontrollierten Stromkreislauf an- oder ausschaltet, schaltet der Magnetschalter mit dem Steuerstrom einen Ferromagneten an oder aus.

Das Verfahren kann prinzipiell alle Anwendungen ersetzen, in denen niederfrequente Elektromagneten zum Einsatz kommen und ist dabei deutlich energieeffizienter. Die Wissenschaftler des KIT haben mit ihrer Forschung vor allem winzige magnetische Schalter im Blick, die etwa bei (Mikro-) Robotern oder in der Mikrofluidik Anwendung finden.

Veröffentlichung und vollständiges Grafik-Copyright:
Dasgupta, S.; Das, B.; Knapp, M., Brand, Richard. A.; Ehrenberg, H.; Kruk, R. and Hahn, H. (2014), Intercalation-Driven Reversible Control of Magnetism in Bulk Ferromagnets. Adv. Mater., 26: 4639–4644. doi:10.1002/adma.201305932
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Online-Artikel (zugangsbeschränkt): http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Weiterer Kontakt:
Simon Scheuerle, Abteilung Presse, Tel.: +49 721 608-48761, Fax: +49 721 608-43658, E-Mail: simon.scheuerle@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie