Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie steuert Magnetismus

09.10.2015

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich. (DOI: 10.002/adma-201305932)

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch Strom ein Magnetfeld erzeugt, jedoch verbraucht sie durchgehend Energie. Eine andere Möglichkeit ist, einen Ferromagneten zu polarisieren, also die magnetischen Strukturen in dem Material parallel auszurichten, so dass ein Gesamt-Magnetfeld entsteht.


Mit der Ein- und Auslagerung von Lithium-Ionen in bestimmte Magneten lässt sich deren Magnetstärke gezielt steuern.

(Grafik: KIT/Wiley-VCH)

Dies benötigt zwar zum Halten des Magnetfeldes keine Energie, es ist jedoch permanent und lässt sich nur mit Aufwand aufheben. Eine andere Option ist die magnetoelektrische Kopplung, bei der ein elektrisches Feld Magnetismus induziert. Allerdings greift diese Methode häufig nur an der obersten Atomschicht des Kristallgitters, die Änderung des Magnetfeldes ist also minimal.

Das nun am KIT entwickelte chemische Verfahren zur Kontrolle des Magnetismus bietet einen neuen Ansatz, der über die zuvor beschriebenen Konzepte hinausgeht: Der Vorgang beeinflusst das gesamte Material, nicht nur die Oberfläche, und ist dabei reversibel, kann also rückgängig gemacht werden.

Zusätzlich – und das ist die wichtigste Innovation dieses Verfahrens – ist der jeweilige magnetische Zustand des Materials (magnetisch / nicht magnetisch) nicht volatil. Das heißt, der Zustand bleibt, im Gegensatz zu einer elektromagnetischen Spule, auch ohne Stromzufuhr und damit ohne kontinuierlichen Energieverbrauch aufrechterhalten.

„Tausendfache Lade- und Entladezyklen von Lithium-Ionen Akkus, wie sie etwa in Handys genutzt werden, zeigen, dass elektrochemische Vorgänge durchaus reversibel sein können. Dies brachte uns auf die Idee, ähnliche Strukturen wie Lithium-Ionen-Akkus zu erforschen“, sagt Subho Dasgupta vom Institut für Nanotechnologie des KIT. Beim Laden und Entladen eines Lithium-Ionen Akkus wandern die Ionen jeweils vom einen zum anderen Akku-Pol und lagern sich dabei in die Elektroden ein.

Die Wissenschaftler um Dasgupta haben nun einen Lithium-Ionen-Akku erstellt, bei dem eine Elektrode aus Maghemit, einem ferromagnetischen Eisenoxid (γ-Fe2O3), besteht und die andere aus reinem Lithium. Experimente zeigten, dass die Lithium-Ionen-Einlagerung in Maghemit dessen Magnetstärke reduziert, auch bei Raumtemperatur.

Durch die gezielte Steuerung der Lithium-Ionen, also durch Laden und Entladen des Akkus, lässt sich somit die Magnetfeldstärke des Maghemits kontrollieren. Dieser Effekt ist, genau wie bei normalen Lithium-Ionen-Akkus, wiederholbar.

Bei den vorgestellten Versuchen erreichten die Forscher eine Änderung der Magnetstärke um bis zu 30 Prozent. Das langfristige Ziel ist jedoch, den Magneten komplett an- und ausschalten zu können. Damit hoffen die Wissenschaftler ein Verfahren zu finden, mit dem sich ein Magnetschalter realisieren lässt, der vom Prinzip her wie ein elektrischer Transistor funktioniert: Während ein elektrischer Transistor mit einem Steuerstrom einen kontrollierten Stromkreislauf an- oder ausschaltet, schaltet der Magnetschalter mit dem Steuerstrom einen Ferromagneten an oder aus.

Das Verfahren kann prinzipiell alle Anwendungen ersetzen, in denen niederfrequente Elektromagneten zum Einsatz kommen und ist dabei deutlich energieeffizienter. Die Wissenschaftler des KIT haben mit ihrer Forschung vor allem winzige magnetische Schalter im Blick, die etwa bei (Mikro-) Robotern oder in der Mikrofluidik Anwendung finden.

Veröffentlichung und vollständiges Grafik-Copyright:
Dasgupta, S.; Das, B.; Knapp, M., Brand, Richard. A.; Ehrenberg, H.; Kruk, R. and Hahn, H. (2014), Intercalation-Driven Reversible Control of Magnetism in Bulk Ferromagnets. Adv. Mater., 26: 4639–4644. doi:10.1002/adma.201305932
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Online-Artikel (zugangsbeschränkt): http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Weiterer Kontakt:
Simon Scheuerle, Abteilung Presse, Tel.: +49 721 608-48761, Fax: +49 721 608-43658, E-Mail: simon.scheuerle@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops