Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie im Inneren von Aerosolpartikeln sorgt für bessere Smogvorhersagen

18.07.2013
Die chemischen Abläufe im Inneren von Smogpartikeln beeinflussen ihre Größe und Masse mehr als bisher angenommen. Mit präziseren Größenangaben lässt sich der Einfluss von Smog auf Luftqualität und Gesundheit besser bewerten.

Los Angeles, London, Neu-Delhi oder Peking – alle sind Megastädte, in denen Millionen von Menschen unter Atembeschwerden und brennenden Augen leiden. Ursache ist Smog. Er ist oft so dick, dass die Spitzen der Hochhäuser verschwinden und man die Sonne tagelang nicht sieht.


Über der amerikanischen Metropole Los Angeles liegt eine dicke Smogschicht.
Steve Buss, aus flickr

Smog – ein Gemisch aus Partikeln und gasförmigen Schadstoffen wie Ozon – bildet sich unter bestimmten Wetterbedingungen aufgrund von Autoverkehr, Industrie oder der Verbrennung von Biomasse wie Kohle und Holz. Hauptbestandteile von städtischem Smog sind die so genannten sekundären organischen Aerosole (SOA). Sie entstehen, indem Kohlenstoffkomponenten, wie sie beispielsweise bei der Verbrennung in die Luft entweichen, durch Ozon und Hydroxylradikale oxidiert werden.

Über die Bildung der Smogpartikel ist allerdings noch recht wenig bekannt. Bisher war es schwierig, die Größe und Masse der Partikel korrekt vorherzusagen. Diese Angaben sind jedoch wichtig, da sie das Ausmaß von schädlichen Gesundheitseffekten und die Visibilität der Luft bestimmen – wie schlecht man also bei Smog sieht.

Einen besseren Einblick in den Smog liefert nun ein Team um den Max-Planck-Forscher Manabu Shiraiwa. „Bisher hat man angenommen, dass nur Gasreaktionen auf der Oberfläche der Partikel für die Bildung von Smog verantwortlich sind“, sagt Shiraiwa, Erstautor einer kürzlich erschienen Studie. „Wir haben herausgefunden, dass es viel wichtiger ist, was im Inneren der Partikel passiert. Hierbei handelt es sich um typische Multiphasenreaktionen, die in Modellvorhersagen berücksichtigt werden müssen“, ergänzt der 30 Jahre alte Japaner, der die Studie am California Institute of Technology in den USA durchführte und im April 2013 zurück an das Mainzer MPI für Chemie kam, wo er bereits früher tätig war.

Um die Stadtluft nachzuahmen, erzeugten die Forscher Smog im Labor. Als Partikelquelle nutzen sie das leicht flüchtige organische Molekül Dodekan. Dodekan gehört zu den Alkanen, die nur aus Kohlenstoff- und Wasserstoffatomen bestehen und die auch bei unvollständiger Verbrennung von Biomasse in die Atmosphäre entweichen. In einer riesigen Spezialkammer gaben sie Hydroxylradikale zur Fotooxidation hinzu, wodurch Smogpartikel entstehen. Hydroylradikale sind eine Art Reinigungsmittel der Atmosphäre, die schnell mit flüchtigen organischen Molekülen wie Methan und Alkanen reagieren. Nach der Oxidation durch die Hydroylradikale vermaßen die Forscher die Größe der in der Kammer entstanden SOA-Partikel. Sie stellten fest, dass die Partikel nach etwa fünf Stunden extrem an Größe und Masse zunahmen.

Da das bisherige Modell aber einen deutlich verlangsamten Anstieg voraussagt, schlussfolgerten Shiraiwa und seine Kollegen, dass die Reaktionen in der Gasphase als Erklärung für das Partikelwachstum nicht ausreichen. Analysen mithilfe eines Massenspektrometers zeigten, dass das kleine flüchtige Molekül Dodekan zu größeren weniger flüchtigen organischen Molekülen reagiert. Da diese nicht aus dem Inneren der Partikel entweichen, wachsen die Partikel an und werden größer. Da solche Multiphasenreaktionen bisher in Modellen zur Luftqualität nicht berücksichtigt wurden, hoffen die Forscher dank ihrer Entdeckung nun auf bessere Vorhersagen zur Luftqualität in Städten.

Shiraiwa, der nun eine Forschungsgruppe am Max-Planck-Institut für Chemie aufbaut, wird weiter die Alterungsprozesse von organischen Aerosolen und verwandte Themen untersuchen. Er erhielt seinen Bachelor und Masterabschluss an der Universität Tokio. Seine Doktorarbeit schrieb er am Mainzer Institut, wo er kinetische Modelle zur Reaktion von atmosphärischen Partikeln entwickelt hat. 2012 erhielt er die Otto-Hahn-Medaille der Max-Planck-Gesellschaft sowie den Paul Crutzen Preis der Gesellschaft Deutscher Chemiker für seine bahnbrechenden Entdeckungen über den Verlauf von chemischen Reaktionen auf der Oberfläche und im Inneren von Aerosolpartikel.

Dr. Susanne Benner | Max-Planck-Institut
Weitere Informationen:
http://www.mpic.de/presse/pressemeldungen/news/chemie-im-inneren-von-aerosolpartikeln-sorgt-fuer-bessere-smogvorhersagen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise