Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie: Effiziente Prozesse in winzig kleinen Anlagen

26.01.2016

Die Deutsche Forschungsgemeinschaft (DFG) richtet am Karlsruher Institut für Technologie (KIT) und der Universität Freiburg eine neue Forschergruppe ein: „Erfassung und Steuerung dynamischer lokaler Prozesszustände in Mikroreaktoren mittels neuer In-situ-Sensorik“, kurz ProMiSe. Darin entwickeln Wissenschaftler elektronische und optische Mikrosensoren und Messtechniken, um chemische und physikalische Prozesse in mikrostrukturierten verfahrenstechnischen Anlagen besser zu verstehen sowie kostengünstiger und energieeffizienter zu gestalten.

Das KIT koordiniert die neue Forschergruppe (FOR 2383 ProMiSe); als Sprecher fungiert Professor Roland Dittmeyer, Leiter des Instituts für Mikroverfahrenstechnik (IMVT) des KIT. Über die ersten drei Jahre fördert die DFG die Forschergruppe mit 2,7 Millionen Euro.


Kanäle oder andere Strömungsstrukturen im Inneren von kompakten Mikroreaktoren optimieren Durchmischung von Chemikalien und Wärmeabfuhr bei Prozessen.

(Foto: IMVT/KIT)


Mithilfe von elektronischen, elektrochemischen und optischen Mikrosensoren werden Prozessparameter in Echtzeit erfasst.

(Bild: Uni Freiburg)

ProMiSe umfasst vier standort- und fachübergreifende Teilprojekte, in denen Wissenschaftler die Untersuchung und gezielte Steuerung von Prozessen in Mikroreaktoren an vier beispielhaften Anwendungen untersuchen: an der Verdampfung von Flüssigkeiten, die für die Abwärmenutzung oder die Kühlung von Hochleistungsbauteilen in der Automobil- und Elektronikindustrie relevant sind, an der heterogen katalysierten Direktsynthese von Wasserstoffperoxid als Schlüsselsubstanz einer „grüneren“ Chemie, an der photochemischen Synthese von Arzneimittelwirkstoffen und derem photochemischen Abbau bei der Nanofiltration von Wasser sowie an der hydrothermalen Synthese funktionalisierter metalloxidischer Nanopartikel.

Mikroreaktoren sind modular aufgebaute, kompakte verfahrenstechnische Anlagen. Die Stoffe werden durch Mikrokanäle mit winzigen Abmessungen geführt, die teilweise wenige Mikrometer (millionstel Meter) betragen . Dank der dadurch im Verhältnis zum Reaktionsvolumen besonders großen Oberfläche zeichnen sich Mikroreaktoren durch eine verbesserte Wärmeübertragung aus.

Die kleinen Abmessungen der Mikrokanäle führen auch zu einer schnelleren Durchmischung. Überdies macht der Einsatz von Mikroreaktoren Prozesse sicherer, besonders bei extrem toxischen Stoffen oder zu Explosionen neigenden Reaktionen, da kleinere Einsatzstoffmengen in verteilten Produktionsläufen vor Ort verwendet werden können.

Bis jetzt sind die lokalen Prozesse in solchen Mikrostrukturapparaten noch nicht vollständig verstanden. Dies gilt vor allem für mehrphasige reaktive Strömungen, an denen zwei oder mehrere Phasen bzw. Fluide (Flüssigkeiten oder Gase) beteiligt sind.

„Bessere, das heißt orts- und zeitaufgelöste Daten zu chemischen Reaktionen, Stofftransportvorgängen und Phasenübergängen in Verbindung mit einer durchgängigen Modellierung ermöglichen es, Prozesse gezielt effizienter zu gestalten“, erklärt Professor Roland Dittmeyer vom KIT, Sprecher der DFG-Gruppe ProMiSe. „Dadurch lassen sich der Verbrauch an Einsatzstoffen und Energie sowie die erzeugten Abfallmengen minimieren, was zu kostengünstigeren und umweltfreundlicheren Prozessen führt.“

Mithilfe von elektronischen, elektrochemischen und optischen Mikrosensoren zur Echtzeit-Erfassung der Prozessparameter, die in den schwer zugänglichen Mikrokanälen integriert werden, wollen die Forscher nun Daten einer ganz neuen Qualität gewinnen und als Grundlage für ein erweitertes Prozessverständnis nutzen.

In der Forschergruppe ProMiSe wirken am KIT neben dem IMVT (Professor Roland Dittmeyer und PD Dr. Jürgen J. Brandner) auch das Institut für Technische Thermodynamik und Kältetechnik (ITTK – Professor Michael Türk) sowie das Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK – Professor Thomas Hanemann) mit. An der Universität Freiburg sind vom Institut für Mikrosystemtechnik (IMTEK) die Lehrstühle für Konstruktion von Mikrosystemen (Professor Peter Woias als stellvertretender Sprecher der Forschergruppe, Dr. Keith Cobry), für Sensoren (Professor Gerald Urban) und für Simulation (Dr. Andreas Greiner) sowie die Gisela-und-Erwin-Sick-Professur für Mikrooptik (Professor Hans Zappe) beteiligt. Als assoziierte Arbeitsgruppen sind am KIT zudem das Institut für Organische Chemie (IOC – Professor Stefan Bräse, Dr. Nicole Jung) und das Institut für Funktionelle Grenzflächen (IFG – Professorin Andrea Schäfer) in ProMiSe eingebunden.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops