Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie vom Blatt

16.09.2010
Forscher wandeln das Skelett eines Blattes in Eisencarbid um. Die neue Technik ermöglicht es, Metallcarbide in nur einem Schritt in filigrane Mikrostrukturen zu bringen.

Auch für Chemiker lohnt es sich, nach Mustern der Natur zu arbeiten. Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung nehmen das ganz wörtlich. Sie haben in einem neuen Verfahren das Skelett eines Blattes fast komplett in magnetisches Eisencarbid umgewandelt. Dazu behandelten die Forscher das Blatt mit Eisenacetat, Stickstoff und Wärme. Die Technik ermöglicht es, alle kohlenstoffhaltigen Strukturen der Natur mit Metallcarbiden nachzubauen. Das ist nicht nur hübsch, sondern auch nützlich. Denn die filigranen Formen der Biologie liefern vielfältige Vorlagen für unterschiedliche Anwendungen. (Angewandte Chemie, International Edition, DOI: 10.1002/anie.201001626)


Ein magnetisches Blatt: Mit einem einfachen chemischen Verfahren haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung das Skelett eines Blattes in Eisencarbid umgewandelt, das magnetisch ist und den Strom leitet. Dank der Methode lassen sich die vielfältigen Formen der Biologie als Vorlage für filigrane Strukturen aus Metallcarbiden nutzen. Bild: MPI für Kolloid- und Grenzflächenforschung

Die feinen Strukturen der Natur sind auch für technische Anwendungen interessant - sie existieren in einer unermesslichen Formenvielfalt, sind mechanisch meist sehr stabil und empfehlen sich wegen ihrer großen Oberflächen als Schablonen für Katalysatoren und Elektroden. Nun ist es Forschern vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam gelungen, das filigrane Skelett eines Blattes mit einer einfachen Methode in Eisencarbid umzuwandeln. Für Metallcarbide interessieren sich Materialwissenschaftler, weil sie magnetisch sind, den Strom leiten und zudem große Hitze sowie mechanische Beanspruchung aushalten. Da sich das Material als so stabil erweist, ließ es sich bislang jedoch kaum gezielt in eine bestimmte Form bringen.

Das haben die Potsdamer Chemiker nun auf einem einfachen chemischen Weg geschafft: Zunächst tauchten sie das Blattskelett eines Gummibaums in Eisenacetatlösung. Anschließend trockneten sie das getränkte Gerüst bei 40 Grad Celsius an der Luft, bevor sie es mit Stickstoff begasten und auf 700 Grad Celsius erhitzten. "Dabei blieb seine Struktur detailgenau erhalten", sagt Zoe Schnepp, die das Experiment vorgenommen hat.

Beim Erhitzen verwandelt sich das Eisenacetat in dem Blattskelett in Eisenoxid, das dann vom Kohlenstoff des Skelettes zu Eisencarbid reduziert wird. "Das Skelett liefert sowohl die Vorlage für die Form als auch den Kohlenstoff für die Reaktion", sagt Zoe Schnepp. "Daher können wir die organische Substanz in nur einem Schritt umwandeln. Das unterscheidet unsere Methode von anderen, die biologische Formen ebenfalls als Vorlage für anorganische Strukturen verwenden." Schon seit einiger Zeit stellen Forscher nämlich Metalloxide auf der Basis von natürlichen Materialien wie Blättern her. "Einem Team ist es auch schon gelungen, Siliciumcarbid aus vorbehandelten Naturstoffen zu erzeugen", sagt Zoe Schnepp. "Wir haben dieses Verfahren nun weiterentwickelt."

Um zu testen, ob das Blatt vollständig in Eisencarbid umgewandelt wurde, hängten die Forscher es als Anode in eine Elektrolysezelle. Tatsächlich sprudelte an dem Blatt Sauerstoff aus der Zelle, während an der Katode Wasserstoffbläschen aufstiegen. "Der Versuch bestätigt, dass das Blatt zum größten Teil in Eisencarbid umgewandelt wurde, es enthält darüber hinaus nur noch etwas Kohlenstoff", sagt Zoe Schnepp. Zusätzlich zeigten die Forscher mit einem Permanentmagneten, dass das Blatt auch die magnetischen Eigenschaften des Eisencarbids angenommen hatte.

Prinzipiell müsste die neue Methode mit allen kohlenstoffhaltigen Naturstoffen funktionieren. "Wir wollen sie daher jetzt an weiteren Materialien testen", sagt Schnepp. "Denn wichtig an der aktuellen Arbeit ist, dass wir den Formenreichtum der Natur nun nutzen können, um in nur einem einfachen Schritt hauchdünne Strukturen aus Metallcarbiden herzustellen."

Originalveröffentlichung:

Zoe Schnepp, Wen Yang, Markus Antonietti, Cristina Giordano
Biotemplating of Metal Carbide Microstructures: The Magnetic Leaf
Angewandte Chemie, International Edition, DOI: 10.1002/anie.201001626
Weitere Informationen erhalten Sie von:
Zoe Schnepp
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Tel.: +49 331 567-9564
E-Mail: zoe.schnepp@mpikg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie