Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie vom Blatt

16.09.2010
Forscher wandeln das Skelett eines Blattes in Eisencarbid um. Die neue Technik ermöglicht es, Metallcarbide in nur einem Schritt in filigrane Mikrostrukturen zu bringen.

Auch für Chemiker lohnt es sich, nach Mustern der Natur zu arbeiten. Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung nehmen das ganz wörtlich. Sie haben in einem neuen Verfahren das Skelett eines Blattes fast komplett in magnetisches Eisencarbid umgewandelt. Dazu behandelten die Forscher das Blatt mit Eisenacetat, Stickstoff und Wärme. Die Technik ermöglicht es, alle kohlenstoffhaltigen Strukturen der Natur mit Metallcarbiden nachzubauen. Das ist nicht nur hübsch, sondern auch nützlich. Denn die filigranen Formen der Biologie liefern vielfältige Vorlagen für unterschiedliche Anwendungen. (Angewandte Chemie, International Edition, DOI: 10.1002/anie.201001626)


Ein magnetisches Blatt: Mit einem einfachen chemischen Verfahren haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung das Skelett eines Blattes in Eisencarbid umgewandelt, das magnetisch ist und den Strom leitet. Dank der Methode lassen sich die vielfältigen Formen der Biologie als Vorlage für filigrane Strukturen aus Metallcarbiden nutzen. Bild: MPI für Kolloid- und Grenzflächenforschung

Die feinen Strukturen der Natur sind auch für technische Anwendungen interessant - sie existieren in einer unermesslichen Formenvielfalt, sind mechanisch meist sehr stabil und empfehlen sich wegen ihrer großen Oberflächen als Schablonen für Katalysatoren und Elektroden. Nun ist es Forschern vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam gelungen, das filigrane Skelett eines Blattes mit einer einfachen Methode in Eisencarbid umzuwandeln. Für Metallcarbide interessieren sich Materialwissenschaftler, weil sie magnetisch sind, den Strom leiten und zudem große Hitze sowie mechanische Beanspruchung aushalten. Da sich das Material als so stabil erweist, ließ es sich bislang jedoch kaum gezielt in eine bestimmte Form bringen.

Das haben die Potsdamer Chemiker nun auf einem einfachen chemischen Weg geschafft: Zunächst tauchten sie das Blattskelett eines Gummibaums in Eisenacetatlösung. Anschließend trockneten sie das getränkte Gerüst bei 40 Grad Celsius an der Luft, bevor sie es mit Stickstoff begasten und auf 700 Grad Celsius erhitzten. "Dabei blieb seine Struktur detailgenau erhalten", sagt Zoe Schnepp, die das Experiment vorgenommen hat.

Beim Erhitzen verwandelt sich das Eisenacetat in dem Blattskelett in Eisenoxid, das dann vom Kohlenstoff des Skelettes zu Eisencarbid reduziert wird. "Das Skelett liefert sowohl die Vorlage für die Form als auch den Kohlenstoff für die Reaktion", sagt Zoe Schnepp. "Daher können wir die organische Substanz in nur einem Schritt umwandeln. Das unterscheidet unsere Methode von anderen, die biologische Formen ebenfalls als Vorlage für anorganische Strukturen verwenden." Schon seit einiger Zeit stellen Forscher nämlich Metalloxide auf der Basis von natürlichen Materialien wie Blättern her. "Einem Team ist es auch schon gelungen, Siliciumcarbid aus vorbehandelten Naturstoffen zu erzeugen", sagt Zoe Schnepp. "Wir haben dieses Verfahren nun weiterentwickelt."

Um zu testen, ob das Blatt vollständig in Eisencarbid umgewandelt wurde, hängten die Forscher es als Anode in eine Elektrolysezelle. Tatsächlich sprudelte an dem Blatt Sauerstoff aus der Zelle, während an der Katode Wasserstoffbläschen aufstiegen. "Der Versuch bestätigt, dass das Blatt zum größten Teil in Eisencarbid umgewandelt wurde, es enthält darüber hinaus nur noch etwas Kohlenstoff", sagt Zoe Schnepp. Zusätzlich zeigten die Forscher mit einem Permanentmagneten, dass das Blatt auch die magnetischen Eigenschaften des Eisencarbids angenommen hatte.

Prinzipiell müsste die neue Methode mit allen kohlenstoffhaltigen Naturstoffen funktionieren. "Wir wollen sie daher jetzt an weiteren Materialien testen", sagt Schnepp. "Denn wichtig an der aktuellen Arbeit ist, dass wir den Formenreichtum der Natur nun nutzen können, um in nur einem einfachen Schritt hauchdünne Strukturen aus Metallcarbiden herzustellen."

Originalveröffentlichung:

Zoe Schnepp, Wen Yang, Markus Antonietti, Cristina Giordano
Biotemplating of Metal Carbide Microstructures: The Magnetic Leaf
Angewandte Chemie, International Edition, DOI: 10.1002/anie.201001626
Weitere Informationen erhalten Sie von:
Zoe Schnepp
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Tel.: +49 331 567-9564
E-Mail: zoe.schnepp@mpikg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise