Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie: Aus Minus mach Plus

03.05.2017

Wiener Chemiker entwickeln eine simple Methode der Polaritätsumkehr

Die Arbeitsgruppe um den Chemiker Nuno Maulide von der Universität Wien hat eine neue Methode der Bindungsknüpfung zwischen zwei Kohlenstoffatomen entwickelt. Dabei wird die natürliche Polarität der reagierenden Gruppe durch simples Reaktionsdesign umgekehrt und macht somit den Weg frei für völlig neue Reaktionen. Darüber hinaus konnten die Forscher zeigen, dass sich durch diese Innovation bekannte Synthesewege bedeutend verkürzen lassen. Die Ergebnisse erscheinen aktuell im renommierten Fachmagazin "Angewandte Chemie".


Die Umpolung eines Moleküls ermöglicht eine Anziehung und somit Bindungsbildung.

Copyright: Maulide Group/Universität Wien


Kurze Synthese von McN-5652.

Copyright: Maulide Group/Universität Wien

Viele der wichtigsten chemischen Reaktionen, inklusive jener in unserem Körper, lassen sich auf simple Regeln der Polarität zurückführen. Analog zu unterschiedlich geladenen Alltagsgegenständen wie Magneten haben auch geladene Atome und Moleküle Anziehungskräfte untereinander. Diese Interaktionen stehen im Zentrum der organischen Chemie, jener Disziplin, die seit etwa 200 Jahren viele Moleküle unseres täglichen Lebens herstellt und entwickelt – seien es Pharmazeutika, Kosmetika, Solarzellen oder Konservierungsstoffe.

Alles hat intrinsische Polarität…

Chemische Verbindungen haben sogenannte intrinsische Polarität. Positiv geladene Gruppen werden als "Elektrophile" bezeichnet (da sie negativ geladene Elektronen anziehen), während negativ geladene Gruppen "Nucleophile" genannt werden (da sie den Nucleus, den in der Atomtheorie positiv geladenen Kern, anziehen).

… aber man kann sie auch umkehren!

Ein spezieller Ansatz in der Chemie ist die Umkehrung der intrinsischen Polarität eines Moleküls oder Atoms. Dieses Konzept wurde in den 1960er Jahre vom deutschen Chemiker Dieter Seebach entworfen und entwickelt – und in weiterer Folge unter dem Namen "Umpolung" weitläufig bekannt und eingesetzt. "Was wir jetzt erreicht haben ist eine neue Art der Umpolung, so wie sie bisher nicht möglich war", sagt Daniel Kaiser, Doktorand an der Fakultät für Chemie und Erstautor der Studie:

"Es ist uns unter einfachen und reproduzierbaren Bedingungen gelungen, einen Teil eines Moleküls, der normalerweise nucleophil ist, in ein Elektrophil zu verwandeln", so Kaiser. "Das ermöglicht uns die Entwicklung einer breiten Palette neuer chemischer Reaktionen. Und: Diese Polaritätsumkehr eröffnet neue Synthesewege und Ansätze beim Planen einer synthetischen Sequenz", erklärt Maulide weiter.

ChemikerInnen planen mehrstufige Synthesen neuer oder bekannter Moleküle auf Basis bekannter Reaktionen und Reaktivitätsmuster – durch neue, unkonventionell polarisierte Bausteine kann ein Paradigmenwechsel eingeleitet werden, der völlig neue Ansätze und Ideen zulässt. Ein solcher neuer Ansatz zur Kohlenstoff-Kohlenstoff-Bindungsbildung ist der Maulide-Gruppe in der vorliegenden Arbeit gelungen.

Unkonventionelle Forschung

"Diese neue Reaktion wirkt auf den ersten Blick unkonventionell. Aber unsere Forschungsgruppe hat schon einige Erfahrung mit ungewöhnlichen Reaktionen – demnach passt es ins Gesamtbild, dass wir nun eine weitere 'eigenartige', aber potenziell sehr nützliche Transformation gefunden haben", sagt Maulide: "Darin liegt der Wert der Grundlagenforschung: Wir stellen unkonventionelle Fragen, unabhängig etwaiger praktischer Anwendungen".

Im Fall von McN-5652 konnten Maulide und sein Team einen hochpotenten bioaktiven Stoff mit Anwendungen im Neuroimaging einfach und schnell herstellen. "Wer weiß, welche Fortschritte diese Entdeckung vielleicht noch bringt", so der portugiesische Chemiker.

Publikation in "Angewandte Chemie"
"Metallfreie formale oxidative C-C-Kupplung durch In-situ-Erzeugung einer elektrophilen Enoloniumspezies"
Daniel Kaiser, Aurélien de la Torre, Saad Shaaban and Nuno Maulide,
in: Angewandte Chemie, 2017.
DOI: doi/10.1002/anie.201701538
http://onlinelibrary.wiley.com/doi/10.1002/ange.201701538/abstract

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 - Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-60277-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-175 33
+43-664-60277-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte