Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Checkpoint fürs Fett: Forscher der Uni Graz entdeckten Mechanismus zur Regulation des Zellwachstums

24.02.2015

Fett ist angesichts moderner Zivilisationskrankheiten wie Diabetes Typ 2 oder Adipositas zunehmend in Verruf geraten. Dabei erfüllt es aber auch ganz wichtige Funktionen im Organismus. Unter anderem ist Fett für das Zellwachstum essenziell, wie Univ.-Prof. Dr. Sepp-Dieter Kohlwein mit seiner Arbeitsgruppe am Institut für Molekulare Biowissenschaften der Karl-Franzens-Universität Graz 2009 erstmals nachweisen konnte. Nun hat das Team weitere Details zur Rolle des Fettstoffwechsels im Zellzyklus geklärt. Die neuen Erkenntnisse wurden soeben im renommierten US-Wissenschaftsjournal Proceedings of the National Academy of Sciences (PNAS) online veröffentlicht.

Damit sich Zellen teilen können, brauchen sie Fett. Aus Triglyzeriden werden durch fettspaltende Enzyme, so genannte Lipasen, Diglyzeride, Monoglyzeride und Fettsäuren freigesetzt, die von den Zellen verwertet werden können.


Hefezellen mit Fett-Tröpfchen (rot). Triglyzeride werden in diesen Lipid-Tröpfchen gespeichert.

Kohlwein/IMB, Uni Graz


Das Bild zeigt verschiedene zelluläre Strukturen der Hefe, die alle von Membranen umschlossen sind. Bei der Zellteilung werden diese Strukturen verdoppelt.

Kohlwein/IMB, Uni Graz

Stehen nicht genug Fettsäuren zur Verfügung, verlangsamt sich der Zellteilungs-Zyklus. Störungen im Zellwachstum können beim Menschen zu schwerwiegenden Erkrankungen führen. So steht auch unkontrolliertes Wachstum von Krebszellen in sehr engem Zusammenhang mit Fettstoffwechselstörungen.

Sepp-Dieter Kohlwein und seine Arbeitsgruppe, allen voran Dr. Neha Chauhan, ist es nun gelungen herauszufinden, welches Abbauprodukt im Fettstoffwechsel Signalwirkung für die Zellteilung hat, welcher Checkpoint in der Zelle dieses Signal auffängt und dementsprechend reagiert. Die ForscherInnen identifizierten das Enzym Swe1 als Checkpoint, der die Zellteilung bremst, wenn zu wenig Fett in Form von Sphingolipiden vorhanden ist.

Ihre Forschungen betreiben die WissenschafterInnen der Uni Graz an Hefezellen. „Diese eignen sich hervorragend als Modellsystem für zelluläre Grundlagenforschung, insbesondere in Bezug auf den Fettstoffwechsel, weil sie humanen Zellen in ihrem Aufbau und ihren Funktionen sehr ähnlich sind“, erklärt Kohlwein.

Deshalb lassen sich viele an Hefezellen gewonnene Erkenntnisse auch auf menschliche oder tierische Zellen übertragen. Hinzu kommt, dass sie nur 90 Minuten brauchen, um sich zu teilen – bei humanen Zellen sind es zwölf Stunden – und somit einfach und in großen Mengen kultiviert werden können.

„Wird in der Hefe die Fettspaltung unterbunden, sodass den Zellen nicht mehr genügend Fettsäuren zur Verfügung stehen, verzögert sich das Zellteilungs-Programm um etwa 30 Minuten, was bei einer normalen Dauer von eineinhalb Stunden beträchtlich ist und einen schwerwiegenden Nachteil für das Überleben der Zell-Population bedeutet“, berichtet Kohlwein.

Der Mechanismus, der dafür verantwortlich ist, wird in der aktuellen Publikation erstmals beschrieben: „Es ist die Swe1 Kinase, ein Enzym, das als Checkpoint registriert, wie viele Sphingolipide in der Zellmembran vorhanden sind. Diese entstehen aus den beim Fettabbau freigesetzten Fettsäuren. Ist die Menge der Sphingolipide zu gering, wird Swe1 aktiv und bremst den Zellzyklus“, fasst Kohlwein zusammen.

Mit seiner Arbeitsgruppe widmet sich Sepp-Dieter Kohlwein seit vielen Jahren erfolgreich der Erforschung der molekularen Grundlagen von Fettstoffwechselerkrankungen im Modellsystem Hefe. Die Anwendung biochemischer und genomischer Technologien sowie die Entwicklung neuartiger mikroskopischer Methoden brachten den WissenschafterInnen der Uni Graz international eine Spitzenstellung ein.

Die richtungweisenden Erkenntnisse wurden im Rahmen des vom Österreichischen Wissenschaftsfonds FWF geförderten Spezialforschungsbereichs LIPOTOX sowie der Kooperation NAWI Graz und des Forschungsnetzwerks BioTechMed-Graz gewonnen. Neha Chauhan war Dissertantin des Doktoratskollegs „Molekulare Enzymologie und Physiologie“ und erhielt ein PostDoc-Stipendium des Vizerektorats für Personal, Personalentwicklung und Gleichstellung der Universität Graz.

Kontakt:
Univ.-Prof. Dr. Sepp-Dieter Kohlwein
Institut für Molekulare Biowissenschaften der Karl-Franzens-Universität Graz
Tel.: 0043 (0)316/380-5487, 0043 (0)676/61 81 421
E-Mail: sepp.kohlwein@uni-graz.at

Publikation:
Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression
Neha Chauhan, Myriam Visram, Alvaro Cristobal-Sarramian, Florian Sarkleti, Sepp D. Kohlwein
PNAS, 23. Februar 2015

Weitere Informationen:

http://yeast.uni-graz.at Informationen zu den Forschungen der Arbeitsgruppe um Sepp-Dieter Kohlwein
http://www.pnas.org/content/early/2015/02/20/1423175112 Publikation in PNAS: Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression

Gudrun Pichler | Karl-Franzens-Universität Graz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie