Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Checkpoint Charlie in der Zelle - wie ein molekularer "Agent" die Verteilung der Chromosomen kontrolliert

13.03.2009
Sie spielt sich im Verborgenen ab und ist im Menschen wie im Wurm einer der wichtigsten Prozesse: Durch die Zellteilung entwickelt sich aus einer einzigen befruchteten Eizelle ein komplexer Organismus, wachsen neue Haare nach oder heilen Wunden.

Wissenschaftler am Forschungsinstitut für Molekulare Pathologie (Wien) und am Max-Planck-Institut für biophysikalische Chemie (Göttingen) haben jetzt entdeckt, wie die Verteilung der Erbinformation zeitlich exakt koordiniert wird. (Science, 13. März 2009)


Menschliche Zellen in verschiedenen Stadien der Zellteilung unter dem Mikroskop sichtbar gemacht. Die Chromosomen sind blau, der Spindelapparat grün eingefärbt. IMP, Wien


Die Trennung der Chromosomen initiiert eine molekulare Nanomaschine, der sogenannte \\\"Anaphase einleitende Komplex\\\" (kurz \\\"APC/C\\\"). Wird der Spindel-Checkpoint aktiviert, lagert sich an APC/C ein zweiter kleiner Proteinkomplex an - quasi ein molekularer \\\"Agent\\\" (rot) - und unterbindet die Wechselwirkung des Komplexes mit anderen Partnern in der Zelle. Als Folge können die Chromosomen nicht mehr getrennt werden. Im Hintergrund: Zellen während der Zellteilung.
Peters, IMP & Stark, MPIbpc

Rund zwei Meter wäre das Erbgut einer menschlichen Zelle lang, würde man die Desoxyribonukleinsäure (DNA)-Moleküle aller 46 Chromosomen aneinanderreihen. Wenn sich die Zelle teilt, muss auch das gesamte Erbgut korrekt auf die Tochterzellen verteilt werden - ein wahres Kunststück für die Zelle. In gesunden Zellen des menschlichen Körpers funktioniert dieser Vorgang täglich viele tausend Male völlig fehlerfrei. In Tumorzellen passieren dagegen häufig Fehler.

Vor jeder Teilung werden die Chromosomen zunächst verdoppelt und es entstehen zwei identische DNA-Moleküle. Diese werden mit zahlreichen molekularen "Zugseilen" - dem sogenannten Spindelapparat - mit den weit entfernten Polen der Zelle verbunden und exakt nebeneinander ausgerichtet. Erst dann dürfen die Chromosomen durch die Zugfasern an die entgegengesetzten Zell-Pole gezogen werden. Werden Chromosomen zu früh getrennt und ungleich auf die Tochterzellen verteilt, drohen Krebs, Trisomie und verfrühte Alterungsprozesse.

"Stopp" und "go" in der Zellteilung

Die eigentliche Trennung der Chromosomen initiiert eine molekulare Nanomaschine: der sogenannte "Anaphase einleitende Komplex" oder "Zyklosom (kurz "APC/C"). Dazu beseitigt der Komplex all diejenigen Proteine, die den Fortlauf der Zellteilung blockieren. Mit einer Art Aufkleber werden die Hemm-Proteine zu zellulärem "Müll" deklariert und im "Müllschredder" der Zelle in ihre Bausteine zerlegt. Dieser Komplex darf allerdings erst dann aktiv werden, wenn alle 46 Chromosomen in symmetrischer Weise mit beiden Polen der Zelle verbunden sind. Ist auch nur ein einziges dieser 46 Chromosomen falsch oder gar nicht mit dem Spindelapparat verbunden, wird ein Mechanismus aktiviert, der auch als Spindel-"Checkpoint" bezeichnet wird - in Anlehnung an die militärischen Checkpoints des kalten Krieges. Dieser Spindel-Checkpoint blockiert APC/C und stoppt dadurch die Trennung der Chromosomen so lange, bis sie alle korrekt mit dem Spindelapparat verbunden sind. Doch wie steuert der Spindel-Checkpoint die Chromosomen-Trennung und schaltet um von "stopp" auf "go"?

Wissenschaftler um Jan-Michael Peters am Forschungsinstitut für Molekulare Pathologie (Wien) und Holger Stark vom Max-Planck-Institut für biophysikalische Chemie (Göttingen) wissen jetzt eine Antwort auf diese Frage. Durch elektronenmikroskopische Untersuchungen konnten Peters und Stark erstmals sichtbar machen, wie sich APC/C verändert, wenn dieser Komplex durch den Spindel-Checkpoint gehemmt wird. Ihre Ergebnisse werden in der aktuellen Ausgabe von Science veröffentlicht.

Molekularer "Agent" blockiert Chromosomen-Verteilung

"Wir haben entdeckt, dass sich ein zweiter kleiner Proteinkomplex an APC/C anlagert, wenn der Spindel-Checkpoint aktiviert wird - quasi ein molekularer "Agent", der sich bei APC/C einschleicht", erklärt Strukturbiologe Stark. Dieser kleine Komplex stellt den größeren APC/C-Komplex "kalt", indem er eine Bindungsstelle blockiert, mit der APC/C normalerweise die Hemm-Proteine einfängt, als Zell-"Müll" markiert und dadurch nachfolgend die Trennung der Schwesterchromatiden auslöst. Ist der Proteinkomplex an APC/C gebunden, kann dieser seine Substrate nicht erkennen; als Folge trennen sich die Chromosomen nicht mehr. "Diese Ergebnisse sind ein Meilenstein auf unserem Weg zum Verständnis der menschlichen Zellteilung", sagt Peters. "Vielleicht kann uns dieses Wissen in der Zukunft auch helfen zu verstehen, warum Krebszellen sich so anders verhalten als normale Zellen".

Originalveröffentlichung:
Franz Herzog, Ivana Primorac, Prakash Dube, Peter Lenart, Björn Sander, Karl Mechtler, Holger Stark und Jan-Michael Peters. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323:1477-1481 (2009) [DOI: 10.1126/science.1163300].
Kontakt:
Prof. Dr. Jan-Michael Peters
Forschungsinstitut für Molekulare Pathologie, Wien
Email: peters@imp.ac.at
Prof. Dr. Holger Stark, Arbeitsgruppe 3D Kryo-Elektronenmikroskopie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel: +49 551 201-1304
Email: hstark1@gwdg.de
Dr. Heidemarie Hurtl, Communications
Forschungsinstitut für Molekulare Pathologie, Wien
Tel: +43 1 79730 -3625
Email: hurtl@imp.ac.at
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel: +49 551 201 -1304
Email: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.imp.ac.at/research/jan-michael-peters/
http://www.mpibpc.mpg.de/groups/stark/
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_07/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten