Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Charité Wissenschaftler entschlüsseln wichtige Struktur bei der Übertragung von Lichtsignalen

10.03.2011
Erneut ist Wissenschaftlern der Charité - Universitätsmedizin Berlin in Zusammenarbeit mit der Humboldt – Universität zu Berlin sowie Universitäten in Südkorea, London und Toronto ein Durchbruch in der biophysikalischen Grundlagenforschung gelungen.

Sie konnten erstmals bei einem wichtigen Informationsträger im menschlichen Körper, dem Rezeptorprotein Rhodopsin, klären, wie ein solches Eiweiß beschaffen sein muss, um ein Lichtsignal aufnehmen zu können. Die Studie ist in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature* veröffentlicht.

Rhodopsin gehört zu den sogenannten G-Protein gekoppelten Rezeptoren. Diese Proteine befinden sich in den Membranen, die jede lebende Zelle umhüllen. Sie verbinden die Zellen mit Signalen aus der Umwelt wie Licht, Düften und Geschmacksstoffen, aber auch mit Signalen aus dem Organismus, wie zum Beispiel Hormonen. Daher sind sie an fast allen physiologischen Vorgängen im Körper und so auch an den meisten Krankheiten beteiligt. Damit ein Rezeptor wie Rhodopsin eine Information aufnehmen kann, muss er das in einem molekularen Informationsträger - wie z. B. einem Hormon oder einer lichtempfindlichen „Antenne“ - codierte Signal aufnehmen.

Dies ist nur möglich, wenn der Rezeptor eine Bindungsstelle ausbildet, in die das Bindungsmolekül (der Ligand) passt. Der Forschungsgruppe ist es zum ersten Mal gelungen, den Lichtrezeptor Rhodopsin in seinem lichtaktivierten Zustand in einer stabilen Form zu halten und die Struktur aufzuklären. In diesem sogenannten Meta-Zustand bindet der Rezeptor das Retinal, einen Abkömmling des Vitamin A, in einer durch Licht umgewandelten Form. Damit erhält man nun Einblick in den Mechanismus der Wechselwirkung zwischen dem Rezeptor und seinem Liganden.

Dies bedeutet einen wesentlichen Fortschritt in der Aufklärung der Signalübertragung in die Zelle. „Man kann aus unserem Beispiel lernen, wie Signalübertragung von einem Liganden in ein Rezeptorprotein überhaupt vor sich gehen kann“, erklärt Prof. Hofmann, stellvertretender Direktor des Instituts für Medizinische Physik und Biophysik der Charité und Mitglied im Zentrum für Biophysik und Bioinformatik der Humbboldt-Universität. „Es gibt Grund zu der Annahme, dass die grundlegenden Vorgänge bei der Ligandenbindung für verschiedene Rezeptoren ähnlich sind. Natürlich hoffen wir auch, dass man für die Behandlung krankhafter Veränderungen der Signalübertragung vom Verständnis der zu Grunde liegenden Strukturen und Mechanismen profitieren wird.“

*Crystal structure of metarhodopsin II. Hui-Woog Choe, Yong Ju Kim, Jung Hee Park, Takefumi Morizumi, Emil F. Pai, Norbert Krauß, Klaus Peter Hofmann, Patrick Scheerer & Oliver P. Ernst. Nature, Advanced Online Publication 9 March 2011, doi:10.1038/nature09789

Kontakt:
Prof. Klaus Peter Hofmann
Stellv. Direktor des Instituts für Medizinische Physik und Biophysik
Charité - Universitätsmedizin Berlin
t: +49 30 450 524 111
kph@charite.de

Stefanie Winde | idw
Weitere Informationen:
http://www.charite.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie