cFLIP: Schlüsselposition bei der Entstehung von weißem Hautkrebs

Die elektronenmikroskopische Darstellung zeigt eine Hauttumorzelle, die durch Stimulation eines Oberflächenrezeptors in die Apoptose gebracht wurde und dadurch die typischen „Apoptose-Bläschen“ zeigt. Foto: UMM<br>

Die Zunahme der UV-Strahlung und das steigende Lebensalter der Bevölkerung lassen die Häufigkeit von Hautkrebserkrankungen weiter ansteigen. Noch häufiger als der sehr bösartige schwarze Hautkrebs, das maligne Melanom, ist der weiße Hautkrebs. Dazu zählen die sogenannten Basalzellkarzinome und das Plattenepithelkarzinom, auch Spinaliom genannt. Sie machen etwa 15 Prozent aller bösartigen Tumore des Menschen aus.

Ob eine Hautzelle einen normalen Lebenszyklus durchläuft oder zum weißen Hautkrebs führt, darauf hat das Eiweiß cFLIP einen entscheidenden Einfluss. Wie Forscher der Universitätsmedizin Mannheim (UMM) unter der Leitung von Professor Dr. Martin Leverkus zeigen konnten, nutzt cFLIP zwei Mechanismen, um eine normale Hautzelle zur Tumorzelle zu transformieren: Zum einen kann das Protein den programmierten Zelltod verhindern, indem es in der Zelle Signale der sogenannten „Todesrezeptor“-Familie blockiert. Zum anderen kann es eine den Tumor abstoßende Immunantwort unterdrücken, indem es entzündungsfördernde Signale hemmt.

Der programmierte Zelltod (Apoptose) ist ein körpereigener Mechanismus, durch den einzelne überflüssige oder störende Zellen sich selbst eliminieren. Im gesunden Organismus sorgt die Apoptose für die Vernichtung schädlicher Zellen sowie für ein ausgewogenes Verhältnis von Zellvermehrung (Proliferation) und Zelltod. Ist der programmierte Zelltod fehlerhaft reguliert, kann dies zur Bildung von Tumoren führen.

Normalerweise binden die Botenstoffe der „Todesrezeptor“-Familie an Oberflächenmoleküle der Tumorzellen und können dadurch Apoptose auslösen. Ist der Inhibitor cFLIP jedoch in den Hautzellen stark exprimiert, verhindert dieses blockierende Eiweiß, dass der programmierte Zelltod ausgelöst wird.

Die exakten Mechanismen, wie Hauttumorzellen durch cFLIP das unkontrollierte Wachstum von Tumorzellen anregen, sind bislang nicht aufgeklärt. Bekannt ist allerdings, dass das Protein in der Zelle in verschiedenen Isoformen, also mit etwas unterschiedlichem Aufbau, vorkommt. Um deren Bedeutung bei der Entwicklung von Hautkrebs weiter aufzuklären, schleusten die Wissenschaftler um Professor Dr. Martin Leverkus, Leiter der Sektion für Molekulare Dermatologie an der Klinik für Dermatologie, Venerologie und Allergologie der Universitätsmedizin Mannheim (UMM), verschiedene Isoformen von cFLIP mittels viraler Vektoren in Tumorzellen ein. Auf diese Wiese konnten sie einzelne Signale identifizieren, die durch cFLIP moduliert werden.

„Mit der Kenntnis der beteiligten Signale können wir nach Wegen suchen, wie wir diese in den Hautkrebszellen abschalten und auf diese Weise sowohl den Zelltod als auch eine Immunantwort auslösen können, die den Tumor vernichtet“, so Leverkus.

Die Ergebnisse der Mannheimer Wissenschaftler sind publiziert:
cFLIP isoforms block CD95- and trail death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signalling complex
Shyam M. Kavuri, Peter Geserick, Daniela Berg, Diana Panayotova Dimitrova, Maria Feoktistova, Daniela Siegmund, Harald Gollnick, Manfred Neumann, Harald Wajant and Martin Leverkus

The Journal of Biological Chemistry, Vol. 286, Issue 21, 18614-18622, MAY 27, 2011

Media Contact

Dr. Eva Maria Wellnitz idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer