Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CeNIDE-Forscher beweisen Tempo - Nanostrukturen schalten schneller

10.05.2011
Sie als mikroskopisch klein zu beschreiben, ist noch untertrieben, doch sie könnten eine große technologische Zukunft haben: Rund 100 Nanometer lange Polymerketten können als winzige Schalter für künftige technische Anwendungen dienen.

Bisher galt die Reaktionszeit der Nanostrukturen jedoch als zu langsam – eine Gruppe von Forschern der Universität Duisburg-Essen (UDE) um Dr. Nils Hartmann vom Center for Nanointegration (CeNIDE) hat nun das Gegenteil bewiesen und ihre Ergebnisse in der renommierten Fachzeitschrift „Angewandte Chemie“ (Band 123, Ausgabe 19) veröffentlicht.

In abgewandelter Form findet man das Material mit dem unaussprechlichen Namen Poly(N-Isopropylacrylamid) auch in Windeln. Hier quillt es bei Feuchtigkeit auf und hält den Babypopo trocken – daher auch der allgemeinere Name „Hydrogel“. Es besteht aus kettenförmigen Molekülen, ist daher ein sogenanntes Polymer. Am Lehrstuhl für Technische Chemie von CeNIDE-Prof. Dr. Mathias Ulbricht können solche Polymerketten dicht an dicht an Oberflächen befestigt werden. Bei Temperaturen unter 32 Grad Celsius binden diese Schichten Wasser; die Struktur ähnelt dann einer Bürste. Steigt die Temperatur jedoch über den kritischen Punkt, fallen die winzigen Ketten zu einer kompakten Schicht zusammen.

Medikamente freisetzen oder Minischalter

Auf diese Weise könnte das Material beispielsweise in Ventilen kleine Öffnungen und Kanäle regulieren. Es wäre als Temperatur- oder Feuchtigkeitssensor zu verwenden, könnte kontrolliert Medikamente im Inneren des menschlichen Körpers freisetzen oder als Minischalter für viele andere Prozesse dienen. Denn mithilfe der Nanopolymere lassen sich auch miniaturisierte Strukturen realisieren, die zudem viel schneller reagieren sollten als ihre bisher verwendeten großen Brüder. Doch genau die Geschwindigkeit entpuppte sich bisher bei vielen Anwendungen als Problem: In der Theorie sollte das Nanopolymer zwar rasend schnell reagieren, aber Tests erbrachten immer wieder Reaktionszeiten im Sekundenbereich. Viel zu langsam für die Steuerung schnell ablaufender Prozesse.

CeNIDE-Mitglied Dr. Nils Hartmann ist Arbeitsgruppenleiter am Lehrstuhl für Physikalische Chemie. Er erkannte den Knackpunkt in den bisherigen

Experimenten: Um die Geschwindigkeit eines Prozesses zu messen, benötigt man zum einen eine Aufnahmetechnik, die schneller ist als der Prozess selbst, und zum anderen einen Reiz, der augenblicklich für die Reaktion des Polymers sorgt. „Die Technik muss insgesamt immer dem Versuchsobjekt angepasst sein“, erklärt Hartmann. „Ansonsten sorgt sie selbst für eine verzögerte Reaktion des Materials.“ Mindestens eines dieser beiden Kriterien haben die bisher bekannten Untersuchungsverfahren jedoch nicht erfüllt.

Mit dem Laser punktgenau erhitzen

Das Team um Hartmann entwickelte daher eine neue Methode: Die Forscher erhitzten das Polymer mit einem Laser. Ist dieser eingeschaltet, wird es augenblicklich heiß, im Moment des Ausschaltens ist die Hitze sofort verschwunden – anschaulich kann man sich das wie bei einem Gasherd vorstellen. Die oberhalb der Probe montierte Mikroskopkamera nahm die Reaktion des Polymers dabei in vielen aufeinanderfolgenden Heiz- und Kühlphasen jeweils ein wenig zeitversetzt auf.

Die Ergebnisse ließen nur einen Schluss zu: Das Hydrogel reagiert innerhalb von Mikro- bis Millisekunden auf den Temperaturreiz. „Das allein ist schon eine völlig neue Erkenntnis“, freut sich Hartmann.

„Zusätzlich konnten wir aber noch zeigen, dass das Polymer auch bei tausendfachen Wiederholungen keinerlei Schaden nimmt und somit für den Langzeiteinsatz geeignet ist.“

Diese Entdeckungen sehen auch andere Experten als höchst relevant an – das macht die Einstufung der Veröffentlichung als „VIP Paper“ in der renommierten Fachzeitschrift „Angewandte Chemie“ deutlich.

Weitere Informationen:
Angewandte Chemie 2011, 123, 4606 - 4609 Angewandte Chemie, Int. Ed. 2011, 50, 4513 - 4516

Redaktion: Birte Vierjahn, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Beate H. Kostka M.A.
Leiterin der Pressestelle und Öffentlichkeitsarbeit in der Stabsstelle des Rektorats Universität Duisburg-Essen
Tel: 0203/379-2430
Fax: 0203/379-2428
beate.kostka@uni-due.de

Beate H. Kostka | Universität Duisburg-Essen
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik