Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Catch me if you can: Malaria-Parasiten in der Radarfalle

06.05.2016

Heidelberger Wissenschaftler erfolgreich im Wettbewerb um begehrte Förderung der „Human Frontier Science Program Organization“ mit 300.000 Euro / Aktueller Artikel in Fachzeitschrift ACS Nano: Lasermessungen geben Hinweis auf Bewegungsmechanismus der Parasiten

Malaria-Erreger sind schnell. Die aus einer einzigen Zelle bestehenden Parasiten bewegen sich rund zehnmal schneller durch das Gewebe unter der Haut als unsere körpereigene Abwehr, die Fresszellen des Immunsystems.


Wissenschaftler des Universitätsklinikums Heidelberg haben eine Laser-Radarfalle für Malaria-Parasiten entworfen und erstmals deren Geschwindigkeit und Kraftentwicklung gemessen.

Universitätsklinikum Heidelberg

Wissenschaftler um Professor Dr. Friedrich Frischknecht, Arbeitsgruppenleiter im Zentrum für Infektionskrankheiten des Universitätsklinikums Heidelberg, haben eine Laser-Radarfalle für die winzigen Lebewesen entworfen und erstmals deren Geschwindigkeit und Kraftentwicklung gemessen.

Die Methode ist nachzulesen in ACS Nano, einer führenden Zeitschrift der Nanotechnologie. Mit Hilfe von mikroskopischen High-Tech-Messverfahren will das Team zusammen mit Kollegen aus London, Paris und Chicago in den kommenden Jahren folgende Fragen beantworten: Welche molekularen Mechanismen liegen dieser medizinisch relevanten Bewegung zugrunde? Wie schafft der Parasit es, sich so schnell – noch dazu durch menschliches Gewebe – zu bewegen?

Mit diesem Projekt setzte sich das internationale Wissenschaftlerteam im hochkompetitiven Wettbewerb um eine Förderung der „Human Frontier Science Program Organization“ gegen 198 Mitbewerber durch: Die Fördersumme beträgt 300.000 Euro.

Die Erreger der Malaria, die sogenannten Plasmodien, gelangen durch einen Mückenstich vom Speichel der Mücke in den menschlichen Organismus. Ihr weiterer Weg führt sie von der Haut in die Blutbahn, von dort in Leberzellen und anschließend in Blutkörperchen. Für diese zielgerichtete Eigenbewegung benutzen die Parasiten die gleichen Proteine wie auch menschliche Muskeln: Aktin und Myosin. Jedoch haben die beiden Proteine bei Plasmodien und anderen Einzellern eine etwas andere Form als beispielsweise bei Wirbeltieren. Aktinproteine bilden eine Art Schiene in Bewegungsrichtung, auf der sich Myosinproteine wie kleine Motoren entlang bewegen und dadurch die Zelle nach vorne schieben. Die Bestandteile dieser Fortbewegungsmaschinerie sind also weitgehend bekannt, die genauen Mechanismen jedoch noch unklar.

Wie können sich die Einzeller so schnell bewegen?

„In unserem nun geförderten Projekt wollen wir vor allem verstehen lernen, wie diese Proteine zusammenspielen, um Kraft und damit Bewegung zu erzeugen“, erklärt Professor Frischknecht. „Immerhin erreichen die 0.01 Millimeter langen Parasiten die beachtliche Geschwindigkeit von rund 7 Millimetern pro Stunde.“ Das Forscherteam wird dazu gentechnisch veränderte Parasiten herstellen, bei denen gezielt kleine Defekte in den Komponenten der Bewegungsmaschinerie erzeugt werden. Der Vergleich mit unveränderten Plasmodien soll schließlich zeigen, welche Bestandteile welche Funktion ausüben.

Erste Messergebnisse zur Kraft, die die Malaria-Erreger für ihre Fortbewegung erzeugen, publizierte die Arbeitsgruppe um Frischknecht in Zusammenarbeit mit dem Team um Professor Dr. Joachim Spatz vom Institut für Biophysikalische Chemie der Universität Heidelberg. Für ihre Messungen platzierten die Wissenschaftler mit Hilfe feinster Laserstrahlen, einer optischen Falle, winzige Plastik-Kügelchen auf der Oberfläche der Parasiten, ein Kügelchen pro Parasit. Dort bleibt es an bestimmten Oberflächenproteinen fest haften, der Einzeller kann es in der Bewegung nicht abstreifen. Bleibt das Kügelchen nun weiter in den Laserstrahlen gefangen und versucht Plasmodium „sich loszureißen“, kann man mit Hilfe eines hochsensiblen Detektors die Kraft erfassen, die es dazu aufwendet.

Muskelproteine erzeugen Kraft zum Weiterkriechen

„Die Kräfte, die hier walten, sind natürlich minimal: Sie sind rund 100 Milliarden Mal kleiner als der Druck, den eine 1-Liter-Flasche Wasser auf unsere Hand ausüben würde“, so Frischknecht. „Wir konnten damit aber zeigen, dass die durch Myosin erzeugte Kraft auf die Oberflächenproteine des Parasiten übertragen wird, mit denen er sich auch an seiner Umgebung anheftet. Diese Messungen sind die Grundlage für unsere weiteren Untersuchungen.“

Mit dieser Projektidee konnte das Team um Professor Frischknecht einen besonderen Erfolg verbuchen: Die Forscher sind weltweit die einzigen die schon zweimal eine Förderung durch das Human Frontier Science Program einwerben konnten. Im aktuellen Wettbewerb wurde der Heidelberger Antrag sogar am besten bewertet. Die Human Frontier Science Program Organization (HFSPO) ist ein internationaler Verbund zur Förderung der Grundlagenforschung zu komplexen Mechanismen lebender Organismen. Die geförderten Themen reichen von molekularen Fragestellungen bis hin zur Interaktion zwischen den Organismen. Gewünscht sind interdisziplinäre und internationale Kooperationen an den Überschneidungsgebieten der einzelnen Wissenschaftsgebiete.

Literatur:
Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration.
Quadt KA, Streichfuss M, Moreau CA, Spatz JP, Frischknecht F.
ACS Nano. 2016; 10(2):2091-2102.
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06417

Ansprechpartner:
Prof. Dr. Friedrich Frischknecht
Parasitologie
Zentrum für Infektionskrankheiten
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 324
Tel.: 06221 / 56 65 37
E-Mail: freddy.frischknecht@med.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg. www.klinikum.uni-heidelberg.de

Weitere Informationen:

http://www.klinikum.uni-heidelberg.de/Parasitologie.1215.0.html?&FS=&L= Parasitologie des Universitätsklinikums Heidelberg
http://www.hfsp.org Human Frontier Science Program Organization

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie