Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Castingshow im Lymphknoten

15.11.2010
Rechenmodell und Experimente zeigen: Das scheinbar planlose Hin und Her der Zellen im Lymphknoten dient dazu, die Immunantwort zu optimieren.

Lymphknoten sind die Marktplätze des Immunsystems: Hier tauschen Zellen Informationen über eingedrungene Krankheitserreger aus und bereiten eine passende Immunantwort vor. Was von außen betrachtet wie ein heilloses Durcheinanderwimmeln von abertausend Zellen scheint, ist in Wirklichkeit aber hochgeordnet und zielgerichtet.


Modell der Verteilung von Immunzellen im Lymphknoten. Die dunkle Zone ist da, wo es dominant blau ist, die helle, wo es dominant grün ist.

Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig lieferten nun ein mathematisches Modell für die Bewegung von Immunzellen im Lymphknoten und konnten damit die Ergebnisse internationaler Kooperationspartner der Rockefeller University in New York, USA und der New York School of Medicine erklären. Ihre Erkenntnis: Die Immunzellen durchlaufen beim Hin- und Herwandern einen Optimierungs-Zyklus, an dessen Ende die passende Immunantwort auf den jeweils eingedrungenen Erreger steht. Die Ergebnisse veröffentlichte jetzt das Wissenschaftsmagazin „Cell“ in seiner aktuellen Ausgabe.

Geordnetes Chaos im Lymphknoten

Sogenannte Keimzentren in den Lymphknoten, in denen Abwehrzellen heranreifen, spielen eine Schlüsselrolle bei der Immunantwort. Sie wurden erstmals im 19. Jahrhundert beschrieben und werden räumlich in eine helle und eine dunkle Zone eingeteilt. Jedoch ist bis heute nicht vollständig verstanden, was in den beiden Zonen geschieht und welche Rolle die Bewegung der Abwehrzellen zwischen ihnen spielt.

Schaue man sich die Zellen normalerweise im Mikroskop an, erwecken sie den Eindruck, als würden sie sich rein zufällig bewegen. „Das scheinbare Chaos im Lymphknoten ist in Wirklichkeit hochgradig geordnet“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“. Ob hinter dieser Zellbewegung aber ein System stecke, darüber diskutierten Wissenschaftler in der Vergangenheit kontrovers. Die erstaunlichen Ergebnisse der aktuellen Studien zeigen nun jedoch deutlich: Der Informationsaustausch im Lymphknoten baut auf einer geordneten Bewegung der Zellen auf, die zwischen den beiden räumlich getrennten Zonen hin und her wandern. In diesem Prozess werden, Runde für Runde, nur die am besten für den jeweiligen Keim passenden Abwehrzellen ausgewählt, um dann dem Organismus die optimalen Waffen, wirksame Antikörper, zur Verfügung zu stellen.

„Es ist ein sich permanent wiederholender Zyklus von Veränderung in der dunklen Zone und Auswahl guter Zellen in der hellen Zone“, sagt Michael Meyer-Hermann. „Die Immunzellen vermehren sich, mutieren und verändern dabei ihre Antikörper leicht. Das Immunsystem prüft dann, ob diese Mutationen eine bessere Immunabwehr liefern – falls ja, wählt es die betreffenden Zellen aus. Dann beginnt der Zyklus von neuem. Am Ende steht die Produktion von optimierten Antikörpern, die effizient an den jeweiligen Erreger binden können und ihn so für Fresszellen markieren.“

Neue Methode ermöglicht es, einzelne Zellen zu verfolgen

Um untersuchen zu können, welchen Weg einzelne Zellen im Lymphknoten gehen, entwickelten amerikanische Forscher der New Yorker Rockefeller University und der New York School of Medicine in den USA eine neuartige Darstellungsmethode: Die Forscher brachten ein Gen in die Erbinformation von Mäusen ein, das die Immunzellen mit einem Farbstoff ausstattet. Das besondere an diesem Farbstoff ist seine Eigenschaft erst dann zu leuchten, wenn er mit einem Lichtstrahl von einer bestimmten Wellenlänge aktiviert wird. Wenn die Forscher eine Zelle untersuchen wollen, aktivieren sie den Farbstoff, die Zelle fängt an zu leuchten und die Wissenschaftler verfolgen ihren Weg im Lymphknoten der Mäuse.

Die hochgradig gerichtete Bewegung konnte erst durch die neue Messmethode zusammen mit einer mathematischen Modellierung der Übergangshäufigkeiten zwischen den Zonen aufgedeckt werden. „Unsere Analyse der Zellbewegung belegt deutlich, welchen Stellenwert heutzutage die Mathematik in der Biologie hat“, so Michael Meyer-Hermann. „Zur Lösung wichtiger wissenschaftlicher Fragestellungen werden aus den mathematischen Modellen Vorhersagen abgeleitet, die die Grundlage für neue Experimente sind und Daten verständlich machen.“

Die neuen Erkenntnisse zur Auswahl von Immunzellen und Optimierung einer Immunantwort können laut Michael Meyer-Hermann entscheidend dabei helfen, in Zukunft Impfungen zu verbessern, bei denen auch die Bildung hoch wirksamer Antikörper im Körper eine wichtige Rolle spielt.

Originalartikel:
Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Gabriel D. Victora, Tanja A. Schwickert, David R. Fooksman, Alice O. Kamphorst, Michael Meyer-Hermann, Michael L. Dustin and Michel C. Nussenzweig. Cell, Volume 143, Issue 4, 592-605, 12 November 2010. doi:10.1016/j.cell.2010.10.032

Dr. Bastian Dornbach | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie