Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Castingshow im Lymphknoten

15.11.2010
Rechenmodell und Experimente zeigen: Das scheinbar planlose Hin und Her der Zellen im Lymphknoten dient dazu, die Immunantwort zu optimieren.

Lymphknoten sind die Marktplätze des Immunsystems: Hier tauschen Zellen Informationen über eingedrungene Krankheitserreger aus und bereiten eine passende Immunantwort vor. Was von außen betrachtet wie ein heilloses Durcheinanderwimmeln von abertausend Zellen scheint, ist in Wirklichkeit aber hochgeordnet und zielgerichtet.


Modell der Verteilung von Immunzellen im Lymphknoten. Die dunkle Zone ist da, wo es dominant blau ist, die helle, wo es dominant grün ist.

Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig lieferten nun ein mathematisches Modell für die Bewegung von Immunzellen im Lymphknoten und konnten damit die Ergebnisse internationaler Kooperationspartner der Rockefeller University in New York, USA und der New York School of Medicine erklären. Ihre Erkenntnis: Die Immunzellen durchlaufen beim Hin- und Herwandern einen Optimierungs-Zyklus, an dessen Ende die passende Immunantwort auf den jeweils eingedrungenen Erreger steht. Die Ergebnisse veröffentlichte jetzt das Wissenschaftsmagazin „Cell“ in seiner aktuellen Ausgabe.

Geordnetes Chaos im Lymphknoten

Sogenannte Keimzentren in den Lymphknoten, in denen Abwehrzellen heranreifen, spielen eine Schlüsselrolle bei der Immunantwort. Sie wurden erstmals im 19. Jahrhundert beschrieben und werden räumlich in eine helle und eine dunkle Zone eingeteilt. Jedoch ist bis heute nicht vollständig verstanden, was in den beiden Zonen geschieht und welche Rolle die Bewegung der Abwehrzellen zwischen ihnen spielt.

Schaue man sich die Zellen normalerweise im Mikroskop an, erwecken sie den Eindruck, als würden sie sich rein zufällig bewegen. „Das scheinbare Chaos im Lymphknoten ist in Wirklichkeit hochgradig geordnet“, sagt Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“. Ob hinter dieser Zellbewegung aber ein System stecke, darüber diskutierten Wissenschaftler in der Vergangenheit kontrovers. Die erstaunlichen Ergebnisse der aktuellen Studien zeigen nun jedoch deutlich: Der Informationsaustausch im Lymphknoten baut auf einer geordneten Bewegung der Zellen auf, die zwischen den beiden räumlich getrennten Zonen hin und her wandern. In diesem Prozess werden, Runde für Runde, nur die am besten für den jeweiligen Keim passenden Abwehrzellen ausgewählt, um dann dem Organismus die optimalen Waffen, wirksame Antikörper, zur Verfügung zu stellen.

„Es ist ein sich permanent wiederholender Zyklus von Veränderung in der dunklen Zone und Auswahl guter Zellen in der hellen Zone“, sagt Michael Meyer-Hermann. „Die Immunzellen vermehren sich, mutieren und verändern dabei ihre Antikörper leicht. Das Immunsystem prüft dann, ob diese Mutationen eine bessere Immunabwehr liefern – falls ja, wählt es die betreffenden Zellen aus. Dann beginnt der Zyklus von neuem. Am Ende steht die Produktion von optimierten Antikörpern, die effizient an den jeweiligen Erreger binden können und ihn so für Fresszellen markieren.“

Neue Methode ermöglicht es, einzelne Zellen zu verfolgen

Um untersuchen zu können, welchen Weg einzelne Zellen im Lymphknoten gehen, entwickelten amerikanische Forscher der New Yorker Rockefeller University und der New York School of Medicine in den USA eine neuartige Darstellungsmethode: Die Forscher brachten ein Gen in die Erbinformation von Mäusen ein, das die Immunzellen mit einem Farbstoff ausstattet. Das besondere an diesem Farbstoff ist seine Eigenschaft erst dann zu leuchten, wenn er mit einem Lichtstrahl von einer bestimmten Wellenlänge aktiviert wird. Wenn die Forscher eine Zelle untersuchen wollen, aktivieren sie den Farbstoff, die Zelle fängt an zu leuchten und die Wissenschaftler verfolgen ihren Weg im Lymphknoten der Mäuse.

Die hochgradig gerichtete Bewegung konnte erst durch die neue Messmethode zusammen mit einer mathematischen Modellierung der Übergangshäufigkeiten zwischen den Zonen aufgedeckt werden. „Unsere Analyse der Zellbewegung belegt deutlich, welchen Stellenwert heutzutage die Mathematik in der Biologie hat“, so Michael Meyer-Hermann. „Zur Lösung wichtiger wissenschaftlicher Fragestellungen werden aus den mathematischen Modellen Vorhersagen abgeleitet, die die Grundlage für neue Experimente sind und Daten verständlich machen.“

Die neuen Erkenntnisse zur Auswahl von Immunzellen und Optimierung einer Immunantwort können laut Michael Meyer-Hermann entscheidend dabei helfen, in Zukunft Impfungen zu verbessern, bei denen auch die Bildung hoch wirksamer Antikörper im Körper eine wichtige Rolle spielt.

Originalartikel:
Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Gabriel D. Victora, Tanja A. Schwickert, David R. Fooksman, Alice O. Kamphorst, Michael Meyer-Hermann, Michael L. Dustin and Michel C. Nussenzweig. Cell, Volume 143, Issue 4, 592-605, 12 November 2010. doi:10.1016/j.cell.2010.10.032

Dr. Bastian Dornbach | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Deutschlandweit erstmalig: Selbstauflösender Bronchial-Stent für Säugling

29.05.2017 | Medizintechnik

Professionelle Mooszucht für den Klimaschutz – Projektstart in Greifswald

29.05.2017 | Ökologie Umwelt- Naturschutz

IAB-Arbeitsmarktbarometer: Beschäftigung legt weiter zu

29.05.2017 | Wirtschaft Finanzen