Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Carnitin in die Zelle gelangt

28.09.2010
Frankfurter Forscher entschlüsseln Transporterprotein in der Zellmembran

Die Proteine der Zellmembran entscheiden, was in unsere Zellen hinein gelangt und wieder heraus kommt. Sind sie defekt, treten schwerwiegende Krankheiten auf, die bisher nur unzulänglich behandelt werden können.

Verglichen mit ihrer Bedeutung im Körper, ist bisher nur wenig über die Arbeitsweise von Membranproteinen bekannt. Eine Arbeitsgruppe des Exzellenzclusters Makromolekulare Komplexe Frankfurt hat nun einen wichtigen Beitrag zur Aufklärung des Transportmechanismus für das zur Energiegewinnung wichtige Molekül Carnitin geleistet. Die Ergebnisse ihrer Studien wurden jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht.

„Gemessen an den Schwierigkeiten, welche die Aufklärung von Membranprotein-Strukturen mit sich bringt, ist dies ein großer Erfolg“, kommentiert Prof. Werner Kühlbrandt, Leiter der Arbeitsgruppe Strukturbiologie am Max-Planck-Institut für Biophysik in Frankfurt. „Denn jeder Transportmechanismus, der entschlüsselt wird, ist bei der Interpretation von Strukturdaten, die wir auch von vergleichbaren Proteinen gewinnen, nützlich.“ Das jetzt aufgeklärte Transportprotein schleust einerseits Carnitin in die Zelle ein und entsorgt anderseits Stoffwechselprodukte aus der Zelle nach außen. Carnitin wird in menschlichen Zellen benötigt, um aus dem Fettstoffwechsel Energie zu gewinnen.

Um die Funktion dieser medizinisch und pharmakologisch wichtigen Transporterproteine dieser Faltungsart im molekularen Detail zu verstehen, benötigt man von jeder Etappe des Transports eine strukturelle Momentaufnahme. Sabrina Schulze hat im Rahmen ihrer Doktorarbeit zwei dieser neuen Momentaufnahmen durch die beiden hochaufgelösten Strukturen des Carnitin-Transporters geliefert. Diese beiden Strukturen zeigen den Carnitin-Transporter mit und ohne Substrat zum Zellinneren hin geöffnet. „Sabrina Schulze hat durch ihre Arbeit einen bedeutenden Beitrag zum Verständnis des Molekültransports über die Zellmenbran geleistet. Insgesamt konnten in der Arbeitsgruppe von Prof. Kühlbrandt bereits drei der Hauptkonformationen dieser wichtigen Transporterproteine aufgeklärt werden." erklärt Dr. Christine Ziegler, die im vergangenen Jahr durch die Röntgenkristallstruktur eines verwandten Betain-Transporters eine zum Zellinneren geschlossene Konformation beschreiben konnte.

Bis zur klinischen Anwendung dieser Ergebnisse ist es noch ein weiter Weg. „Bisher wissen wir immer noch relative wenig über die Funktionsweise dieser Art von Membranproteinen. Es ist schwierig, diese Transporterproteine in eine geordnete kristalline Form zu überführen, die dann mit Röntgenstrahlen untersucht werden können um die hochaufgelöste Struktur zu erhalten“, erklärt Sabrina Schulze. Das liegt unter anderem daran, dass diese dynamischen Makromoleküle ein wasser- und ein fettlösliches Ende besitzen und deshalb zum einen schwer aus der natürlichen Zellmembran zu isolieren sind und zum zweiten häufig außerhalb der Membranschicht instabil werden. Oft sind die Kristalle, die man trotz dieser Schwierigkeiten manchmal erhält, nur sehr klein. Um dennoch verlässliche Daten über die Struktur des Membranproteins zu gewinnen, benötigt man Röntgenstrahlen von hoher Brillanz, wie sie etwas an der europäischen Synchrotron-Strahlungsquelle (ESRF) in Grenoble (Frankreich) oder an der schweizerischen Synchrotron-Strahlungsquelle (SLS) in Villigen erzeugt wird. Von allen bisher aufgeklärten Proteinstrukturen gehören nur 0,5 Prozent zu den Membranproteinen. Ihre Bedeutung wird aber deutlich, wenn man sich vor Augen führt, dass schätzungsweise 20 bis 30 Prozent der Gene in unserem Körper Baupläne für Proteine in der Zellmembran enthalten.

Publikation: Sabrina Schulze et. al. Structural Basis of Na+-independent and cooperative substrate/product antiport in CaiT, Nature, Band 467, S. 233, doi:10.1038.

Informationen: Sabrina Schulze und Prof. Werner Kühlbrandt, Max-Planck-Institut für Biophysik, Exzellenzcluster für Makromekulare Komplexe Frankfurt, Campus Riedberg, Tel.: (069) 6303-3054, sabrina.schulze@biophys.mpg.de.

Tel.: (069) 6303-3000 werner.kühlbrandt@biophys.mpg.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht JUMP-1 – ein magnetisches Polymer aus Jena
28.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise