Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bund fördert neues Verfahren zur Herstellung beschichteter Tabletten

27.10.2011
Die meisten Medikamente nehmen wir in Form von Tabletten zu uns. Zuvor haben beschichtete Tabletten oder Dragees eine lange Reihe von Produktionsschritten durchlaufen, da sie bislang erst nach der Herstellung beschichtet werden.

Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) entwickeln jetzt ein Verfahren, das die Beschichtung in den Herstellungsprozess integrieren und dadurch Zeit, Kosten und Materialien sparen soll. Mit 750.000 Euro wird das Projekt „in situ coating“ für drei Jahre vom Bundesministerium für Bildung und Forschung gefördert.

An Keksen und Süßigkeiten, die ähnlich beschichtet sind wie „Smarties“, wollen die Wissenschaftler das Verfahren in Zusammenarbeit mit einem Mentor aus der Industrie zunächst testen. „In situ coating soll dann aber vielseitig einsetzbar sein – zum Beispiel in der Pharmazie oder zur Herstellung von Düngemitteln“, sagt Projektleiterin Sandra Petersen vom Lehrstuhl für Thermische Verfahrenstechnik der MLU. Welche Stoffe bei der Herstellung denkbar sind, werden drei Doktoranden im Team erforschen.

„In situ“ heißt „vor Ort“ und beschreibt die entscheidende Innovation im Herstellungsprozess: "Die Tablette wird in einem Schritt – am selben Ort – geformt und beschichtet. Das Stoffgemisch wird so gesteuert gekühlt, dass es von außen nach innen zur Kristallisation kommt“, erläutert Prof. Dr. Dr. h.c. Joachim Ulrich. Gemeinsam mit dem Verfahrenstechniker Dr. Torsten Stelzer und Moritz Bradler vom Gründernetzwerk Univations hatte Ulrich beim Bundesministerium für Bildung und Forschung (BMBF) den Projektantrag gestellt. Vor kurzem wurde das Vorhaben in der Förderlinie „Validierung des Innovationspotenzials wissenschaftlicher Forschung“ bewilligt.

„Das neue Verfahren mischt die Stoffe quasi selbst und setzt sie beschichtet zusammen. Dadurch benötigen wir weniger Anlagen und sparen Zeit, Kosten und Material“, erklärt Stelzer. Bislang wird zunächst das Pulver hergestellt, granuliert oder kristallisiert, dann werden die einzelnen Tabletten gepresst und erst im Anschluss beschichtet und getrocknet. Die einzelnen Verfahrensschritte beim „in situ coating“ funktionieren bereits. „Für uns liegt die Herausforderung jetzt darin, diese Schritte in einen Gesamtablauf zu übertragen und zu perfektionieren“, sagt Torsten Stelzer.

Bis zum Frühjahr 2012 will das Team aus Pharmazeuten, Verfahrenstechnikern und Physikern verschiedene Modellsysteme entwickeln und damit erste Nahrungsmittel herstellen. Koordiniert wird das Vorhaben von der Apothekerin Sandra Petersen. In zwei Jahren wird das BMBF über die Fortführung des Projekts entscheiden.

Ansprepartner:
Dr. Torsten Stelzer
Thermische Verfahrenstechnik
Telefon: 0345 55 28403
E-Mail: torsten.stelzer@iw-uni-halle.de
Sandra Petersen
Thermische Verfahrenstechnik
Telefon: 0345 55 28410
E-Mail: sandra.petersen@iw-uni-halle.de

Corinna Bertz | idw
Weitere Informationen:
http://www.validierung-foerderung.de/vorhaben/in-situ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

nachricht Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
24.03.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der steile Aufstieg der Berner Alpen

24.03.2017 | Geowissenschaften

Stadtplanung im Klimawandel: HafenCity Universität Hamburg entwickelt Empfehlungen

24.03.2017 | Architektur Bauwesen

Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad

24.03.2017 | Biowissenschaften Chemie