Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BSE - Was hat die Kuh verrückt gemacht?

10.03.2009
Wissenschaftler an der Universität Konstanz entdecken neue Hinweise auf die Hintergründe von Prionen-bedingten Krankheiten

Wissenschaft ist manchmal Detektivarbeit: Man sammelt Indizien, verfolgt Spuren, verdächtigt. Frustriert endet man in Sackgassen und beginnt von vorn an neuen Spuren, stetig auf den baldigen Durchbruch hoffend.

Dabei ist der Täter bekannt. Seit über zwanzig Jahren kennen Wissenschaftler nun schon den körpereigenen Baustein im Gehirn, der, wenn er sich verändert, tödliche Krankheiten auslöst, wie zum Beispiel die Creutzfeldt-Jakob Krankheit (CJK) im Menschen oder Bovine Spongiforme Enzephalopathie (BSE) in Rindern. Was aber lange unerklärbar blieb, war die Frage, wieso dieses natürliche Protein, genannt PrP (von Prion Protein), überhaupt vom Körper gebildet wird.

Ein Forscherteam der Universität Konstanz konnte nun zeigen, dass PrP eine lebenswichtige Rolle im Organismus spielt. Die Studie, die in der sehr renommierten Zeitschrift PLoS Biology erscheint, berichtet, dass PrP während der embryonalen Entwicklung Zellen bei der Kommunikation mit anderen Zellen unterstützt.

CJK und BSE gehören zu einer Gruppe seltener neurodegenerativer Krankheiten, die vor allem das Nervensystem angreifen und innerhalb von nur wenigen Wochen bis Monaten zum Tod führen. Sie werden weder durch Viren noch Bakterien verursacht, sondern durch infektiöse Partikeln, so genannte Prionen, die vollständig aus abnormalem PrP aufgebaut sind. Es ist bekannt, dass Prionen spontan im menschlichen Körper entstehen können. Die Ansteckungsgefahr durch den Verzehr von infiziertem Rindfleisch oder bei chirurgischen Eingriffen hat jedoch in der Öffentlichkeit größere Aufmerksamkeit erhalten. Bisher sind Prionen-bedingte Krankheiten unheilbar.

Interessanterweise ist das natürliche PrP völlig harmlos und kommt, vom Fisch bis zum Mensch, in den meisten Organismen vor. Erst die abnormale Veränderung seiner Struktur verwandelt es in seinen lebensgefährlichen Cousin. Die veränderten Prionen lagern sich im Gehirn zu äußerst stabilen Aggregaten zusammen. Das Fatale daran ist, dass diese Aggregate gesunde PrPs in einer Kettenreaktion anstecken und ebenfalls krankhaft verändern können. Obwohl dieser Umwandlungsprozess die Ausbreitung von Prionen erklärt, ist es jedoch vermutlich der daraus entstehende Mangel an natürlichem PrP, der die eigentliche neurologische Erkrankung hervorruft. "Eine abnormale Funktion des PrP ist wahrscheinlich einer der Gründe für den neuronalen Abbau." erklärt der Biologe Dr. Edward Málaga-Trillo, der Leiter der Studie. Dabei war die natürliche Funktion des gesunden PrP im Körper lange Zeit ein Rätsel. Bisherige Versuche an genetisch veränderten Mäusen scheiterten, da die Tiere, die weder gesundes noch entartetes PrP besaßen, völlig gesund erschienen. Eine Sackgasse?

Keineswegs. Die Wissenschaftler aus Konstanz konnten nun einen ersten Etappensieg erringen, auf dessen Suche sich Prionen-Experten schon lange Zeit befanden. Erstmalig ist es gelungen zu zeigen, dass der Mangel an PrP eindeutige physiologische Veränderungen in einem lebenden Organismus hervorrufen kann. Die Biologen verwendeten dafür Zebrafisch-Eier und injizierten diesen Morpholinos, DNA-ähnliche Moleküle, die verhindern, dass normales PrP gebildet wird. In diesen so genannten "knock-down"-Experimenten konnten sich die Fisch-Embryonen nicht optimal entwickeln und waren damit nicht überlebensfähig. Dies war der erstmalige Beweis dafür, dass dem gesunden PrP eine wichtige Rolle bei der Entwicklung des lebenden Organismus zukommt, und setzte den Grundstein für weitere Experimente, in denen die genaue Aufgabe des PrP ermittelt werden sollte.

"Danach konnten wir nachweisen, dass PrP als eine Art Klebstoff zwischen den Zellen fungiert, der an der Ausbildung und am Erhalt von Zell-Zell-Kontakten beteiligt ist," erklärt der Co-Autor Dr. Gonzalo Solis, Mitglied des Konstanzer Forscherteams am Lehrstuhl von Prof. Claudia Stürmer. Die Biologen konnten nachweisen, dass bestimmte Proteine, die normalerweise an Zell-Zell-Kontakten zu finden sind, ohne die Hilfe von PrP ihre zellulären Einsatzorte nicht erreichen konnten. "Unsere Ergebnisse zeigen, dass das natürliche PrP hilft, Signale zu übermitteln, mit denen die Zellen kommunizieren, um weitere Schritte wie den Zusammenhalt oder kontrollierte Bewegungen miteinander abzustimmen", so Málaga-Trillo. Ist diese Telefonleitung gestört, hat es negative Auswirkungen auf die Entwicklung und die Funktion von Geweben, wie z.B. des Nervensystems, aber auch auf den gesamten restlichen Körper. Die Erkenntnisse eröffnen erstmalig Einblick in die molekulare Funktion von PrP und liefern so Indizien für den Ablauf von Prionen-bedingten Krankheiten.

Dass sich die Forscher ausgerechnet Fische als Versuchsmodell ausgesucht haben, ist ein weiterer neuer Aspekt der Studie und unterscheidet sich von dem weit verbreiteten Gebrauch von Säugetieren in der Prionenforschung. Die Wissenschaftler denken, dass eine intensivere Forschung am Zebrafisch dabei helfen wird, die genaue Rolle von PrP im Gehirn zu entschlüsseln und damit weitere Hinweise auf den Ursprung von neurodegenerativen Krankheiten zu erlangen. Außerdem stellt sich die spannende Frage, ob Fische, die mit Säugetier-Prionen infiziert wurden, neurologische Schädigungen ausbilden. Sollte dies der Fall sein, könnten Zebrafische als Modellorganismus bei Prionen-bedingten Krankheiten eingesetzt werden, zum Beispiel für Medikamentenstudien.

Natürlich bedeuten die Ergebnisse von Málaga-Trillo, Solis und Kollegen nicht, dass nun eine plötzliche Heilmethode gegen BSE und CJK bestünde. Allerdings ist es dem Team aus Konstanz gelungen, erste Steine eines Mosaiks zusammenzusetzen, welches unser Bild von Prionen-bedingten Krankheiten erweitern wird und an dessen Ende die Hoffnung auf deren Heilung steht.

Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, et al. (2009): Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7(3): e1000055. doi:10.1371/journal.pbio.1000055

Claudia Leitenstorfer | idw
Weitere Informationen:
http://www.uni-konstanz.de
http://biology.plosjournals.org/perlserv/?request=get-document&doi:10.1371/journal.pbio.1000055&ct=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie