Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brennpunkt Gletscher: Mikroben auf dem Eis heizen ein

14.06.2016

Bakterien könnten eine wichtigere Rolle beim Abschmelzen von Gletschern spielen als bisher angenommen. In einer Veröffentlichung in der Fachzeitschrift Nature Biofilms and Microbiomes zeigen Forscher von der Montana State University und dem MPI Bremen, wie die räumliche Anordnung der Mikroben einen effizienten Nährstoffaustausch ermöglicht und ein Abschmelzen beschleunigen kann.

Gletscher bedecken etwa zehn Prozent der Landfläche der Erde. Sie sind wichtig für unser Klima, da sie große Mengen an Süßwasser speichern und Sonnenlicht, das auf die Erde trifft, reflektieren. Das zunehmende Abschmelzen von Gletschern führt zum Anstieg des Meeresspiegels und verringert die Reflektion von Sonnenlicht und trägt so zur globalen Erwärmung bei.


Blick in eine Probe von einem Kryokonit: Freilebende Bakterien (grün) und solche, die an fadenförmige Cynobakterien (violett) angeheftet sind.

Heidi Smith

Das Leben auf Gletschern ist zum größten Teil mikrobisch. Doch man weiß nur wenig über die Rolle, die Mikroorganismen für die biogeochemischen Kreisläufe in Gletschersystemen spielen. Die aktuelle Veröffentlichung beschäftigt sich damit, wie Kohlenstoff – Nahrung für Bakterien - aus dem Eis und in die Umwelt transportiert wird.

Heidi Smith von der Montana State University (MSU), USA, und ein internationales Team von Wissenschaftlern untersuchte dazu die mikrobielle Gemeinschaft und ihre Aktivität auf sogenannten Kryokoniten in der Antarktis. Kryokonite – meist Staubteilchen, die vom Wind auf Gletscher verweht werden – heizen sich in der Sonne auf und schmelzen dadurch das darunterliegende Eis. Dadurch bilden sich kreisrunde Löcher im Gletscher.

“An den Kryokonitteilchen fanden wir eine vielfältige mikrobielle Gemeinschaft”, sagt Mitautor Marcel Kuypers, Direktor am Max-Planck-Institut für Marine Mikrobiologie in Bremen. Die vorliegenden Ergebnisse lassen vermuten, so Smith und ihre Kollegen, dass die Kryokonitlöcher einen Nährboden bilden für die Entstehung sogenannter Biofilme, was den Nährstoffaustausch zwischen einzelnen Zellen erleichtert und Hotspots biologischer Aktivität entstehen lässt. “Dadurch sammelt sich vermutlich organisches Material an diesen Partikeln an. Das verringert die Reflektion von Sonnenlicht, der Gletscher schmilzt schneller.”

“Es ist so ähnlich wie ein Stein auf einem Gletscher, der sich in der Sonne aufheizt und das umliegende Eis schmilzt“, erklärt Christine Foreman, Heidi Smiths Betreuerin und Außerordentliche Professorin für Chemical and Biological Engineering an der MSU. “Heidis Arbeit ist deswegen besonders interessant, weil sie als eine der Ersten direkte Messungen an Biofilmen auf einem Gletscher vorgenommen hat. Wir konnten zeigen, dass Biofilme Kohlenstoff und andere Nährstoffe in Gletschersystemen transportieren, und dass das einen ökologischen Nutzen für das Überleben von Organismen in diesem extremen Lebensraum birgt.”

Das nutzt auch der Klimaforschung. Denn ein besseres Verständnis des Kohlenstoffspeichers in Gletschern und des Transports von Kohlenstoff in andere Ökosysteme kann dazu beitragen, aktuelle Klimamodelle zu verbessern. Es ist schon lange bekannt, dass organischer Kohlenstoff, der für Jahrtausende in Gletschern gespeichert war, beim Abschmelzen freigesetzt wird und Mikroorganismen als Nahrung dient. Die nun vorliegende Studie zeigt, dass auch durch die Fixierung von anorganischem Kohlenstoff durch Mikroorganismen auf Gletschern organischer Kohlenstoff entsteht, der rasch von benachbarten Organismen verbraucht wird.

“Die Zusammenarbeit mit Rachel Foster und Prof. Kuypers am MPI in Bremen hat unsere Forschung auf eine ganz neue Ebene katapultiert. Während ihrer Doktorarbeit verbrachte Heidi Smith zwei Monate am MPI, um mit der dortigen NanoSIMS-Gruppe zu arbeiten“, so Foreman.

Das NanoSIMS (Nanoscale Secondary Ion Mass Spectrometer) ermöglicht es, einzelne Zellen in gemischten Gemeinschaften in Umweltproben phylogenetisch zu identifizieren und ihre Stoffwechselfunktion zu messen. “Mit Hilfe der NanoSIMS-Technologie konnten wir sehen, wie die räumliche Organisation von Mikroben in Biofilmen auf einem antarktischen Gletscher zu einem effizienten Nährstoffaustausch zwischen den einzelnen Organismen führt.”

"Ich fand die Größe der Cyanobakterienfäden und die vielen angehefteten Bakterien besonders beeindruckend – schließlich waren sie in einem Gletscher eingefroren gewesen“, schwärmt auch Mitautorin Rachel Foster, die während der Studie am MPI Bremen das NanoSIMS betreute. „Mit dem NanoSIMS konnten wir darstellen und messen, wie Kohlenstoff zwischen Bakterien und Cyanobakterien ausgetauscht wird – das war eine sehr aufschlussreiche Leistung.“

“Bakterien sind für das freie Auge unsichtbar. Das macht es manchmal schwer, ihre Bedeutung zu erkennen. Aber sie sind die häufigsten Organismen auf unserer Erde“, betont Smith. “Außerdem bilden Mikroben üblicherweise die Basis aquatischer Nahrungsnetze und werden vermutlich als Erste auf Veränderungen im Ökosystem reagieren. Zusätzlich zur Gletscherschmelze und der daraus folgenden Veränderung des Lebensraums Meer trägt auch der Anstieg an Kohlendioxid zur globalen Erwärmung bei.“

Erstellt mit Material einer Pressemeldung der Montana State University.

Originalveröffentlichung

Biofilms on glacial surfaces: hotspots for biological activity
Heidi J Smith, Amber Schmit, Rachel Foster, Sten Littman, Marcel MM Kuypers, Christine M Foreman. npj Biofilms and Microbiomes 2, 16008
DOI: doi:10.1038/npjbiofilms.2016.8

Kontakt
Heidi Smith, hjsmith12@gmail.com
Marcel Kuypers, mkuypers@mpi-bremen.de

Oder die Pressestelle
Fanni Aspetsberger
Manfred Schlösser
presse@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie