Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brennpunkt Gletscher: Mikroben auf dem Eis heizen ein

14.06.2016

Bakterien könnten eine wichtigere Rolle beim Abschmelzen von Gletschern spielen als bisher angenommen. In einer Veröffentlichung in der Fachzeitschrift Nature Biofilms and Microbiomes zeigen Forscher von der Montana State University und dem MPI Bremen, wie die räumliche Anordnung der Mikroben einen effizienten Nährstoffaustausch ermöglicht und ein Abschmelzen beschleunigen kann.

Gletscher bedecken etwa zehn Prozent der Landfläche der Erde. Sie sind wichtig für unser Klima, da sie große Mengen an Süßwasser speichern und Sonnenlicht, das auf die Erde trifft, reflektieren. Das zunehmende Abschmelzen von Gletschern führt zum Anstieg des Meeresspiegels und verringert die Reflektion von Sonnenlicht und trägt so zur globalen Erwärmung bei.


Blick in eine Probe von einem Kryokonit: Freilebende Bakterien (grün) und solche, die an fadenförmige Cynobakterien (violett) angeheftet sind.

Heidi Smith

Das Leben auf Gletschern ist zum größten Teil mikrobisch. Doch man weiß nur wenig über die Rolle, die Mikroorganismen für die biogeochemischen Kreisläufe in Gletschersystemen spielen. Die aktuelle Veröffentlichung beschäftigt sich damit, wie Kohlenstoff – Nahrung für Bakterien - aus dem Eis und in die Umwelt transportiert wird.

Heidi Smith von der Montana State University (MSU), USA, und ein internationales Team von Wissenschaftlern untersuchte dazu die mikrobielle Gemeinschaft und ihre Aktivität auf sogenannten Kryokoniten in der Antarktis. Kryokonite – meist Staubteilchen, die vom Wind auf Gletscher verweht werden – heizen sich in der Sonne auf und schmelzen dadurch das darunterliegende Eis. Dadurch bilden sich kreisrunde Löcher im Gletscher.

“An den Kryokonitteilchen fanden wir eine vielfältige mikrobielle Gemeinschaft”, sagt Mitautor Marcel Kuypers, Direktor am Max-Planck-Institut für Marine Mikrobiologie in Bremen. Die vorliegenden Ergebnisse lassen vermuten, so Smith und ihre Kollegen, dass die Kryokonitlöcher einen Nährboden bilden für die Entstehung sogenannter Biofilme, was den Nährstoffaustausch zwischen einzelnen Zellen erleichtert und Hotspots biologischer Aktivität entstehen lässt. “Dadurch sammelt sich vermutlich organisches Material an diesen Partikeln an. Das verringert die Reflektion von Sonnenlicht, der Gletscher schmilzt schneller.”

“Es ist so ähnlich wie ein Stein auf einem Gletscher, der sich in der Sonne aufheizt und das umliegende Eis schmilzt“, erklärt Christine Foreman, Heidi Smiths Betreuerin und Außerordentliche Professorin für Chemical and Biological Engineering an der MSU. “Heidis Arbeit ist deswegen besonders interessant, weil sie als eine der Ersten direkte Messungen an Biofilmen auf einem Gletscher vorgenommen hat. Wir konnten zeigen, dass Biofilme Kohlenstoff und andere Nährstoffe in Gletschersystemen transportieren, und dass das einen ökologischen Nutzen für das Überleben von Organismen in diesem extremen Lebensraum birgt.”

Das nutzt auch der Klimaforschung. Denn ein besseres Verständnis des Kohlenstoffspeichers in Gletschern und des Transports von Kohlenstoff in andere Ökosysteme kann dazu beitragen, aktuelle Klimamodelle zu verbessern. Es ist schon lange bekannt, dass organischer Kohlenstoff, der für Jahrtausende in Gletschern gespeichert war, beim Abschmelzen freigesetzt wird und Mikroorganismen als Nahrung dient. Die nun vorliegende Studie zeigt, dass auch durch die Fixierung von anorganischem Kohlenstoff durch Mikroorganismen auf Gletschern organischer Kohlenstoff entsteht, der rasch von benachbarten Organismen verbraucht wird.

“Die Zusammenarbeit mit Rachel Foster und Prof. Kuypers am MPI in Bremen hat unsere Forschung auf eine ganz neue Ebene katapultiert. Während ihrer Doktorarbeit verbrachte Heidi Smith zwei Monate am MPI, um mit der dortigen NanoSIMS-Gruppe zu arbeiten“, so Foreman.

Das NanoSIMS (Nanoscale Secondary Ion Mass Spectrometer) ermöglicht es, einzelne Zellen in gemischten Gemeinschaften in Umweltproben phylogenetisch zu identifizieren und ihre Stoffwechselfunktion zu messen. “Mit Hilfe der NanoSIMS-Technologie konnten wir sehen, wie die räumliche Organisation von Mikroben in Biofilmen auf einem antarktischen Gletscher zu einem effizienten Nährstoffaustausch zwischen den einzelnen Organismen führt.”

"Ich fand die Größe der Cyanobakterienfäden und die vielen angehefteten Bakterien besonders beeindruckend – schließlich waren sie in einem Gletscher eingefroren gewesen“, schwärmt auch Mitautorin Rachel Foster, die während der Studie am MPI Bremen das NanoSIMS betreute. „Mit dem NanoSIMS konnten wir darstellen und messen, wie Kohlenstoff zwischen Bakterien und Cyanobakterien ausgetauscht wird – das war eine sehr aufschlussreiche Leistung.“

“Bakterien sind für das freie Auge unsichtbar. Das macht es manchmal schwer, ihre Bedeutung zu erkennen. Aber sie sind die häufigsten Organismen auf unserer Erde“, betont Smith. “Außerdem bilden Mikroben üblicherweise die Basis aquatischer Nahrungsnetze und werden vermutlich als Erste auf Veränderungen im Ökosystem reagieren. Zusätzlich zur Gletscherschmelze und der daraus folgenden Veränderung des Lebensraums Meer trägt auch der Anstieg an Kohlendioxid zur globalen Erwärmung bei.“

Erstellt mit Material einer Pressemeldung der Montana State University.

Originalveröffentlichung

Biofilms on glacial surfaces: hotspots for biological activity
Heidi J Smith, Amber Schmit, Rachel Foster, Sten Littman, Marcel MM Kuypers, Christine M Foreman. npj Biofilms and Microbiomes 2, 16008
DOI: doi:10.1038/npjbiofilms.2016.8

Kontakt
Heidi Smith, hjsmith12@gmail.com
Marcel Kuypers, mkuypers@mpi-bremen.de

Oder die Pressestelle
Fanni Aspetsberger
Manfred Schlösser
presse@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Live-Verfolgung in der Zelle: Biologische Fussfessel für Proteine
19.06.2018 | Universität Basel

nachricht Tag it EASI - neue Methode zur genauen Proteinbestimmung
19.06.2018 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics