Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremse für das Tumorwachstum

14.01.2015

Manche Krebsarten wachsen enorm schnell. Nur mit Tricks können sie die dafür notwendigen Nährstoffe aus ihrer Umgebung gewinnen. Bei der Suche nach neuen Ansätzen für eine Therapie stehen diese Tricks weit oben. Ein internationales Team von Wissenschaftlern konnte jetzt entscheidende Details klären.

Ohne das Enzym ACSS2 wären Krebszellen kaum in der Lage, sich so rasant zu teilen und zu vermehren, wie sie dies bisweilen tun. Dieses Enzym ermöglicht es ihnen, Acetat, also Essigsäureester, anstelle von Glukose (Traubenzucker) für die Bildung von Fettstoffen zu verwenden und so beispielsweise neue Zellwände aufzubauen. Fehlt das Enzym, sterben die Krebszellen unter bestimmten Bedingungen ab.


Graphical Abstract

Über diese Entdeckung berichtet ein internationales Team von Wissenschaftlern aktuell in der Fachzeitschrift Cancer Cell. Nach Aussage der Wissenschaftler bietet sich diese Entdeckung möglicherweise als Ansatz für eine neue Therapie an, mit der der Tumor quasi „ausgehungert“ wird.

An der Arbeit beteiligt ist die Würzburger Professorin Almut Schulze. Sie forscht seit einem Jahr am Lehrstuhl für Biochemie und Molekularbiologie am Biozentrum der Uni Würzburg; zuvor war sie 16 Jahre lang an einem Krebsforschungsinstitut in London tätig, am „Cancer Research UK London Research Institute“.

Wirkungsvolle Strategien gegen den Nahrungsmangel

Im Gegensatz zu normalen Zellen im Gewebe vermehren sich Krebszellen sehr schnell. Dazu brauchen sie ausreichend Nahrung, um neue Zellbausteine aufzubauen und Energie zu gewinnen. Ein wichtiger Nährstoff für Krebszellen ist dabei Glukose, die der Organismus durch den Abbau von Nahrung gewinnt und über die Blutbahn im Körper verteilt.

Allerdings wachsen Tumoren oft so schnell, dass sie nicht ausreichend mit Blutgefäßen versorgt werden. Dann fehlt es ihnen an Nährstoffen und Sauerstoff, was das Wachstum spürbar bremst. Krebszellen haben allerdings Strategien entwickelt, die es ihnen ermöglichen, auch unter diesen Bedingungen weiter zu wachsen. Forscher versuchen, diese Veränderungen im Stoffwechsel von Krebszellen zu identifizieren, um damit neue Ansätze für die Krebstherapie zu finden.

Auffällige Enzyme im Visier

In der Studie, die gerade im Journal Cancer Cell publiziert wurde, haben sich Forscher aus verschiedenen Arbeitsrichtungen zusammengeschlossen, um dieses Problem von vielen Seiten anzupacken. „Wir haben zunächst die Stoffwechselprozesse in Krebszellen am Computer simuliert und anschließend analysiert“, berichtet Almut Schulze. Dabei galt das Augenmerk der Wissenschaftler vor allem Enzymen, die besonders wichtige Reaktionen steuern. Tatsächlich entdeckten sie eine Vielzahl von Enzymen, die für die Bildung von Lipiden notwendig sind.

In einem nächsten Schritt schalteten sie mit Hilfe der Gentechnik gezielt einzelne Enzyme in Zellen aus Brustkrebs und Prostatakarzinomen ab und untersuchten die Folgen auf das Wachstum der Zellen. Um die Bedingungen im Tumor zu simulieren, wurden die Zellen dabei in einem speziellen Inkubator gehalten, in dem die Sauerstoffkonzentration reguliert werden kann. Die spannende Frage hier: Welches Enzym muss abgeschaltet werden, damit Krebszellen in einer sauerstoffarmen Umgebung absterben?

„Das Enzym, das dabei den stärksten Effekt hatte, war ACSS2“, schildert Almut Schulze das Ergebnis. ACSS2 ermöglicht es den Krebszellen, auf Acetat umzusteigen, wenn es ihnen an Glukose mangelt, und so weiterhin Lipide zu produzieren. Acetat kommt in geringen Mengen im Blut und in Geweben vor und kann unter bestimmten Bedingungen von Tumorzellen aufgenommen und verarbeitet werden. Wie die Untersuchungen der Wissenschaftler zeigen, nehmen Krebszellen verstärkt Acetat auf und setzen es zur Produktion von Lipiden ein, wenn ihnen Sauerstoff fehlt.

Erfolgreiche Wachstumsbremse im Experiment

„Wenn nun das Enzym ACSS2 ausgeschaltet wurde, konnten die Zellen nicht mehr ausreichende Zellbausteine bilden. Dadurch konnten sich die Zellen nicht mehr so schnell vermehren, und das Wachstum von Tumoren in Versuchstieren konnte aufgehalten werden“, schildert Schulze die Ergebnisse. Um zu zeigen, dass ACSS2 auch in menschlichen Tumoren eine wichtige Rolle spielt, haben die Forscher auch Gewebe von Brustkrebspatienten untersucht. Dabei fanden sie, dass weit fortgeschrittene und aggressive Tumoren, in denen sich oft Regionen mit Sauerstoffmangel finden, große Mengen dieses Enzyms bilden. „Wenn es nun gelingt, einen Wirkstoff zu entwickeln, der die Funktion von ACSS2 blockiert, könnte dieser für die Behandlung solcher Tumoren eingesetzt werden“, hofft die Wissenschaftlerin.

Experten aus vielen Regionen und Fachgebieten

Molekularbiologe, Biochemiker und pharmazeutische Chemiker, jeder ein Experte in seinem Forschungsgebiet, aus London, Cambrigde, Oxford, Glasgow und Würzburg waren an der Studie beteiligt; unterstützt wurden sie von Mitarbeitern eines großen Pharmaunternehmens. Die Arbeitsgruppe von Almut Schulze beschäftigt sich schon seit vielen Jahren mit der Rolle der Lipidsynthese in der Krebsentstehung. Ihr Beitrag zu dieser Studie bestand vor allem in der Identifikation von ACSS2 als wichtigem Enzym für das Wachstum von Krebszellen und die Untersuchung von Tumorgeweben. In Zukunft wollen Schulze und ihre Mitarbeiter untersuchen, welche weiteren Rollen ACSS2 für Tumorzellen spielen könnte.

Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Zachary T. Schug, Barrie Peck, Dylan T. Jones, Qifeng Zhang, Shaun Grosskurth, Israt S. Alam, Louise M. Goodwin, Elizabeth Smethurst, Susan Mason, Karen Blyth, Lynn McGarry, Daniel James, Emma Shanks, Gabriela Kalna, Rebecca E. Saunders, Ming Jiang, Michael Howell, Francois Lassailly, May Zaw Thin, Bradley Spencer-Dene, Gordon Stamp, Niels J.F. van den Broek, Gillian Mackay, Vinay Bulusu, Jurre J. Kamphorst, Saverio Tardito, David Strachan, Adrian L. Harris, Eric O. Aboagye, Susan E. Critchlow, Michael J.O. Wakelam, Almut Schulze, and Eyal Gottlieb.

Kontakt

Prof. Dr. Almut Schulze, T: (0931) 31-83290, almut.schulze@uni-wuerzburg.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.ccell.2014.12.002 Zur Originalpublikation
http://www.pch2.biozentrum.uni-wuerzburg.de/research_groups/ag_schulze/ Zur Homepage von Almut Schulze

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics