Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brandpilze und Maispflanzen rüsten auf

10.12.2010
Max-Planck-Wissenschaftler entschlüsseln Genom von Mais-Schädling

Pilze sind bedeutende Pflanzenschädlinge, die weltweit für immense Ertragsverluste an Kulturpflanzen wie Mais und anderen Getreidesorten verantwortlich sind. Regine Kahmann vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg und Jan Schirawski, inzwischen an der Universität Göttingen, haben zusammen mit Wissenschaftlern des Helmholtz Zentrums in München das Erbgut von Sporisorium reilianum analysiert, eines wichtigen Mais-Schädlings. Durch einen Vergleich mit dem Genom einer verwandten Pilzart haben sie neue Gene identifiziert, die für den Befall von Mais wichtig sind. (Science, 10. Dezember 2010)


Ähnlich, aber doch verschieden: die Symptome von zwei eng verwandten Brandpilzen an Zwerg-Maiskolben. Links: gesunder Maiskolben, Mitte: mit Ustilago maydis infizierter Maiskolben, rechts: mit Sporisorium reilianum infizierter Maiskolben. Bild: Jan Schirawski

Die Brandpilze Ustilago maydis und Sporisorium reilianum sind Parasiten von Maispflanzen. Ustilago maydis verursacht die so genannte Mais-Beulenbrandkrankheit. Dabei bilden sich große tumorartige Strukturen an Blättern, Kolben und männlicher Blüte, in denen sich der Pilz vermehrt und Sporen produziert. Auch Sporisorium reilianum befällt Maispflanzen, bewirkt aber eine Infektion der gesamten Pflanze, bei der sich die Symptome nur in den männlichen und weiblichen Blüten zeigen. Diese Krankheit wird deshalb auch als Maiskopfbrand bezeichnet.

Wie diese Schädlinge Pflanzen befallen können, ist bislang kaum bekannt. Vor vier Jahren war es unter Federführung der Marburger Gruppe gelungen, die Genomsequenz von Ustilago maydis zu entschlüsseln. Damals hatten sie gezeigt, dass die Gene einer großen Zahl gänzlich neuartiger, vom Pilz ausgeschütteter Proteine auf den Chromosomen in Gruppen angeordnet sind, so genannten Genclustern. Diese Proteine steuern die Kolonisierung der Wirtspflanze.

Ähnlich und doch verschieden

Zunächst konnten die Forscher die Proteine nur in Ustilago maydis nachweisen. "Wir konnten uns jedoch nicht vorstellen, dass diese für den Befall so wichtigen Proteine nur im Genom eines einzigen Brandpilzes vorkommen. Deshalb haben wir auch die Genomsequenz von Sporisorium reilianum ermittelt", sagt Regine Kahmann vom Marburger Max-Planck-Institut. Tatsächlich kommen mehr als 90 Prozent der ausgeschütteten Proteine aus Ustilago maydis auch in Sporisorium reilianum vor. Allerdings unterscheiden sich viele dieser Proteine stark zwischen den beiden Arten und sind daher auf Gen-Ebene nur schwer nachzuweisen. "Überraschenderweise sind jedoch nahezu alle Gene der beiden Organismen in der gleichen Reihenfolge angeordnet. Daher konnten wir die zwei Genome wie Blaupausen übereinanderlegen und auf diese Weise die Unterschiede sichtbar machen", sagt Kahmann.

Dabei entdeckten die Wissenschaftler 43 so genannte Divergenzregionen, in denen die Gene der Pilze besonders unterschiedlich waren. Darunter befanden sich alle bereits vor vier Jahren identifizierten Gencluster, deren Gene eine wichtige Rolle bei der Infektion der Wirtspflanzen spielen. Darüber hinaus beeinflussen vier von sechs zufällig ausgewählten Divergenzbereichen die Infektionsstärke von Ustilago maydis. Allerdings enthalten die Divergenzregionen nicht immer Gene für ausgeschüttete Proteine. In einer Region kamen ausschließlich Gene für Proteine vor, die vom Pilz nicht nach außen abgegeben werden. "Dies deutet darauf hin, dass noch weitere, bislang unentdeckte Moleküle das Verhältnis zwischen Pilz und Pflanze steuern", vermutet Jan Schirawski.

Evolutionärer Wettlauf zwischen Mais und Pilz

Es unterscheiden sich also gerade die Gene zwischen den beiden Pilzen, die für den Befall der Maispflanzen wichtig sind. Vermutlich hatte die unterschiedliche Lebensweise von Ustilago maydis und Sporisorium reilianum zur Folge, dass die Pilze im Laufe der Evolution jeweils artspezifische Genvarianten gebildet haben, z. B. um die pflanzliche Immunantwort zu unterdrücken. Die Maispflanzen wiederum haben die Zielmoleküle der Pilzproteine verändert. Für jedes von den Pilzen ausgeschüttete Protein bilden Maispflanzen offenbar mindestens ein Protein zur Abwehr. "Wir sehen hier die Spuren eines sehr langen Kampfes zwischen verteidigender Pflanze und angreifenden Parasiten. Denn die Vielfalt an Angriffs- und Verteidigungswaffen sind das Ergebnis eines Rüstungswettlaufs zwischen Pflanze und Pilz. Jede Veränderung auf der einen Seite, wurde durch eine Anpassung der anderen Seite gekontert", sagt Schirawski. Die Marburger Forscher hoffen, dass sich auf der Basis der über ihre Verschiedenheit entdeckten Moleküle langfristig neue Strategien zur Bekämpfung dieser wichtigen Pilzgruppe entwickeln lassen.

Originalveröffentlichung:

Jan Schirawski, Gertrud Mannhaupt, Karin Münch, Thomas Brefort, Kerstin Schipper, Gunther Doehlemann, Maurizio Di Stasio, Nicole Rössel, Artemio Mendoza-Mendoza, Doris Pester, Olaf Müller, Britta Winterberg, Elmar Meyer, Hassan Ghareeb, Theresa Wollenberg, Martin Münsterkötter, Philip Wong, Mathias Walter, Eva Stukenbrock, Ulrich Güldener and Regine Kahmann
Pathogenicity determinants in smut fungi revealed by genome comparison
Science, 10. Dezember 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Regine Kahmann
Max-Planck-Institut für terrestrische Mikrobiologie, Marburg
Tel.: +49 6421 178501
E-Mail: kahmann@mpi-marburg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie