Brandpilze und Maispflanzen rüsten auf

Ähnlich, aber doch verschieden: die Symptome von zwei eng verwandten Brandpilzen an Zwerg-Maiskolben. Links: gesunder Maiskolben, Mitte: mit Ustilago maydis infizierter Maiskolben, rechts: mit Sporisorium reilianum infizierter Maiskolben. Bild: Jan Schirawski<br>

Pilze sind bedeutende Pflanzenschädlinge, die weltweit für immense Ertragsverluste an Kulturpflanzen wie Mais und anderen Getreidesorten verantwortlich sind. Regine Kahmann vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg und Jan Schirawski, inzwischen an der Universität Göttingen, haben zusammen mit Wissenschaftlern des Helmholtz Zentrums in München das Erbgut von Sporisorium reilianum analysiert, eines wichtigen Mais-Schädlings. Durch einen Vergleich mit dem Genom einer verwandten Pilzart haben sie neue Gene identifiziert, die für den Befall von Mais wichtig sind. (Science, 10. Dezember 2010)

Die Brandpilze Ustilago maydis und Sporisorium reilianum sind Parasiten von Maispflanzen. Ustilago maydis verursacht die so genannte Mais-Beulenbrandkrankheit. Dabei bilden sich große tumorartige Strukturen an Blättern, Kolben und männlicher Blüte, in denen sich der Pilz vermehrt und Sporen produziert. Auch Sporisorium reilianum befällt Maispflanzen, bewirkt aber eine Infektion der gesamten Pflanze, bei der sich die Symptome nur in den männlichen und weiblichen Blüten zeigen. Diese Krankheit wird deshalb auch als Maiskopfbrand bezeichnet.

Wie diese Schädlinge Pflanzen befallen können, ist bislang kaum bekannt. Vor vier Jahren war es unter Federführung der Marburger Gruppe gelungen, die Genomsequenz von Ustilago maydis zu entschlüsseln. Damals hatten sie gezeigt, dass die Gene einer großen Zahl gänzlich neuartiger, vom Pilz ausgeschütteter Proteine auf den Chromosomen in Gruppen angeordnet sind, so genannten Genclustern. Diese Proteine steuern die Kolonisierung der Wirtspflanze.

Ähnlich und doch verschieden

Zunächst konnten die Forscher die Proteine nur in Ustilago maydis nachweisen. „Wir konnten uns jedoch nicht vorstellen, dass diese für den Befall so wichtigen Proteine nur im Genom eines einzigen Brandpilzes vorkommen. Deshalb haben wir auch die Genomsequenz von Sporisorium reilianum ermittelt“, sagt Regine Kahmann vom Marburger Max-Planck-Institut. Tatsächlich kommen mehr als 90 Prozent der ausgeschütteten Proteine aus Ustilago maydis auch in Sporisorium reilianum vor. Allerdings unterscheiden sich viele dieser Proteine stark zwischen den beiden Arten und sind daher auf Gen-Ebene nur schwer nachzuweisen. „Überraschenderweise sind jedoch nahezu alle Gene der beiden Organismen in der gleichen Reihenfolge angeordnet. Daher konnten wir die zwei Genome wie Blaupausen übereinanderlegen und auf diese Weise die Unterschiede sichtbar machen“, sagt Kahmann.

Dabei entdeckten die Wissenschaftler 43 so genannte Divergenzregionen, in denen die Gene der Pilze besonders unterschiedlich waren. Darunter befanden sich alle bereits vor vier Jahren identifizierten Gencluster, deren Gene eine wichtige Rolle bei der Infektion der Wirtspflanzen spielen. Darüber hinaus beeinflussen vier von sechs zufällig ausgewählten Divergenzbereichen die Infektionsstärke von Ustilago maydis. Allerdings enthalten die Divergenzregionen nicht immer Gene für ausgeschüttete Proteine. In einer Region kamen ausschließlich Gene für Proteine vor, die vom Pilz nicht nach außen abgegeben werden. „Dies deutet darauf hin, dass noch weitere, bislang unentdeckte Moleküle das Verhältnis zwischen Pilz und Pflanze steuern“, vermutet Jan Schirawski.

Evolutionärer Wettlauf zwischen Mais und Pilz

Es unterscheiden sich also gerade die Gene zwischen den beiden Pilzen, die für den Befall der Maispflanzen wichtig sind. Vermutlich hatte die unterschiedliche Lebensweise von Ustilago maydis und Sporisorium reilianum zur Folge, dass die Pilze im Laufe der Evolution jeweils artspezifische Genvarianten gebildet haben, z. B. um die pflanzliche Immunantwort zu unterdrücken. Die Maispflanzen wiederum haben die Zielmoleküle der Pilzproteine verändert. Für jedes von den Pilzen ausgeschüttete Protein bilden Maispflanzen offenbar mindestens ein Protein zur Abwehr. „Wir sehen hier die Spuren eines sehr langen Kampfes zwischen verteidigender Pflanze und angreifenden Parasiten. Denn die Vielfalt an Angriffs- und Verteidigungswaffen sind das Ergebnis eines Rüstungswettlaufs zwischen Pflanze und Pilz. Jede Veränderung auf der einen Seite, wurde durch eine Anpassung der anderen Seite gekontert“, sagt Schirawski. Die Marburger Forscher hoffen, dass sich auf der Basis der über ihre Verschiedenheit entdeckten Moleküle langfristig neue Strategien zur Bekämpfung dieser wichtigen Pilzgruppe entwickeln lassen.

Originalveröffentlichung:

Jan Schirawski, Gertrud Mannhaupt, Karin Münch, Thomas Brefort, Kerstin Schipper, Gunther Doehlemann, Maurizio Di Stasio, Nicole Rössel, Artemio Mendoza-Mendoza, Doris Pester, Olaf Müller, Britta Winterberg, Elmar Meyer, Hassan Ghareeb, Theresa Wollenberg, Martin Münsterkötter, Philip Wong, Mathias Walter, Eva Stukenbrock, Ulrich Güldener and Regine Kahmann
Pathogenicity determinants in smut fungi revealed by genome comparison
Science, 10. Dezember 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Regine Kahmann
Max-Planck-Institut für terrestrische Mikrobiologie, Marburg
Tel.: +49 6421 178501
E-Mail: kahmann@mpi-marburg.mpg.de

Media Contact

Barbara Abrell Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer