Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

These Bots were made for Walking: Cells Power Biological Machines

16.11.2012
They’re soft, biocompatible, about 7 millimeters long – and, incredibly, able to walk by themselves. Miniature “bio-bots” developed at the University of Illinois are making tracks in synthetic biology.

Designing non-electronic biological machines has been a riddle that scientists at the interface of biology and engineering have struggled to solve. The walking bio-bots demonstrate the Illinois team’s ability to forward-engineer functional machines using only hydrogel, heart cells and a 3-D printer.

With an altered design, the bio-bots could be customized for specific applications in medicine, energy or the environment. The research team, led by U. of I. professor Rashid Bashir, published its results in the journal Scientific Reports.

“The idea is that, by being able to design with biological structures, we can harness the power of cells and nature to address challenges facing society,” said Bashir, an Abel Bliss Professor of Engineering. “As engineers, we’ve always built things with hard materials, materials that are very predictable. Yet there are a lot of applications where nature solves a problem in such an elegant way. Can we replicate some of that if we can understand how to put things together with cells?”

The key to the bio-bots’ locomotion is asymmetry. Resembling a tiny springboard, each bot has one long, thin leg resting on a stout supporting leg. The thin leg is covered with rat cardiac cells. When the heart cells beat, the long leg pulses, propelling the bio-bot forward.

The team uses a 3-D printing method common in rapid prototyping to make the main body of the bot from hydrogel, a soft gelatin-like polymer. This approach allowed the researchers to explore various conformations and adjust their design for maximum speed. The ease of quickly altering design also will allow them to build and test other configurations with an eye toward potential applications.

For example, Bashir envisions the bio-bots being used for drug screening or chemical analysis, since the bots’ motion can indicate how the cells are responding to the environment. By integrating cells that respond to certain stimuli, such as chemical gradients, the bio-bots could be used as sensors.

“Our goal is to see if we can get this thing to move toward chemical gradients, so we could eventually design something that can look for a specific toxin and then try to neutralize it,” said Bashir, who also is a professor of electrical and computer engineering, and of bioengineering. “Now you can think about a sensor that’s moving and constantly sampling and doing something useful, in medicine and the environment. The applications could be many, depending on what cell types we use and where we want to go with it.”

Next, the team will work to enhance control and function, such as integrating neurons to direct motion or cells that respond to light. They are also working on creating robots of different shapes, different numbers of legs, and robots that could climb slopes or steps.

“The idea here is that you can do it by forward-engineering,” said Bashir, who is the director of the Micro and Nanotechnology Laboratory. “We have the design rules to make these millimeter-scale shapes and different physical architectures, which hasn’t been done with this level of control. What we want to do now is add more functionality to it.”

“I think we are just beginning to scratch the surface in this regard,” said graduate student Vincent Chan, first author of the paper. “That is what’s so exciting about this technology – to be able to exploit some of nature’s unique capabilities and utilize it for other beneficial purposes or functions.”

The National Science Foundation supported this work through a Science and Technology Center (Emergent Behavior of Integrated Cellular Systems).

Graduate student Mitchell Collens, postdoctoral researcher Kidong Park, chemical and biological engineering professor Hyunjoon Kong, and mechanical science and engineering professor Taher Saif were co-authors of the paper. Bashir also is affiliated with the Frederick Seitz Materials Research Laboratory and the Institute for Genomic Biology at the U. of I.

Editor’s notes: To reach Rashid Bashir, call 217-333-3097; email rbashir@illinois.edu.

The paper, “Development of miniaturized walking biological machines,” is available online:

http://www.nature.com/srep/2012/121115/srep00857/full/srep00857.html

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics