Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher aktivieren Reparaturprogramm für Nervenleitungen

07.10.2016

Aushebeln molekularer Bremse ließ verletzte Nervenzellen nachwachsen

Verletzungen des Rückenmarks können Lähmungen verursachen und die Gesundheit auch in anderer Weise dauerhaft beeinträchtigen, denn die geschädigten Nervenverbindungen wachsen nicht nach. Nun ist es Wissenschaftlern des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) gelungen, eine molekulare Bremse zu lösen, die die Wiederherstellung von Nervenleitungen verhindert. Die Behandlung von Mäusen mit dem Wirkstoff „Pregabalin“, der die Wachstumsbremse beeinflusst, ließ verletzte Nervenleitungen regenerieren. Ein Forscherteam um den Neurobiologen Frank Bradke berichtet im Fachjournal „Neuron“.


Wissenschaftler des DZNE haben eine molekulare Bremse identifiziert, die die Regeneration von Nervenverbindungen verhindert. Dafür mussten große Menge an Gen-Daten analysiert werden. Dies ist in der obigen Abbildung veranschaulicht. Bild: DZNE/A. Tedeschi

Die Nervenzellen des Menschen sind zu einem Netzwerk verschaltet, dessen Ausläufer in alle Winkel des Körpers hineinreichen. Steuersignale gelangen so vom Kopf bis in die Zehenspitzen – und Sinneseindrücke strömen in Gegenrichtung zurück. Wie bei einem Staffellauf werden dabei Impulse von Nervenzelle zu Nervenzelle weitergegeben. Wird dieses Leitungssystem beschädigt, kann das drastische Folgen haben – besonders dann, wenn Gehirn oder Rückenmark betroffen sind. Denn die Zellen des zentralen Nervensystems sind über lange Fortsätze – sogenannte Axone – miteinander verknüpft. Werden diese Fortsätze gekappt, wachsen sie nicht nach.

Talente wiedererwecken

Beschädigte Nervenleitungen können jedoch nur dann regenerieren, wenn zwischen den betroffenen Zellen neue Verbindungen entstehen. Dazu müssen die Zellen gewissermaßen ihre Arme ausstrecken, das heißt: die Axone müssen wachsen. Zu Beginn der Embryonalentwicklung ist diese Fähigkeit vorhanden, sie geht jedoch verloren, wenn das Nervensystem ausgereift ist. Lässt sie sich reaktivieren? Diese Frage stellten sich Professor Bradke und seine Kollegen.

„Wir sind von der Hypothese ausgegangen, dass Nervenzellen ihr Wachstumsprogramm aktiv runterregulieren, wenn sie andere Zellen erreicht haben. Das geschieht, damit sie nicht über das Ziel hinausschießen. Demnach sollte es eine Wachstumsbremse geben, die dann eingeschaltet wird, sobald sich eine Nervenzelle mit anderen verknüpft hat“, sagt Dr. Andrea Tedeschi, Mitglied im Team von Frank Bradke und Erstautor der aktuellen Veröffentlichung.

Fahndung im Erbgut

Im Organismus von Mäusen und in Zellkulturen starteten die Wissenschaftler eine umfangreiche Suche nach Erbanlagen, die das Wachstum von Nervenzellen regulieren. „Das glich der berühmten Suche nach der Nadel im Heuhaufen. In einer Nervenzelle sind je nach Entwicklungsstadium hunderte von Genen aktiv. Der bioinformatische Aufwand war erheblich. Dafür haben wir eng mit Kollegen der Universität Bonn zusammengearbeitet“, so Bradke.

„Letztlich konnten wir einen aussichtsreichen Kandidaten identifizieren. Das Gen mit der Bezeichnung Cacna2d2 spielt für die Ausbildung der Synapsen, also der Verschaltung der Nervenzellen, eine wichtige Rolle.“ In weiteren Untersuchungen veränderten die Forscher die Aktivität des Gens, indem sie es zum Beispiel ausschalteten. So konnten sie nachweisen, dass sich Cacna2d2 tatsächlich auf das Wachstum der Axone und die Regeneration von Nervenverbindungen auswirkte.

Pregabalin löste neuronales Wachstum aus

Cacna2d2 codiert den Bauplan eines Proteins, das Bestandteil eines größeren Molekülkomplexes ist. Das Protein verankert in der Zellmembran sogenannte Ionenkanäle, die den Einstrom von Kalzium-Teilchen in die Zelle regulieren. Da sich die Kalzium-Konzentration unter anderem auf die Freisetzung von Botenstoffen auswirkt, sind diese Kanäle essentiell für die zelluläre Kommunikation.

Für weitere Untersuchungen griffen die Forscher auf eine Substanz zurück, von der schon länger bekannt war, dass sie sich am molekularen Anker der Kalzium-Kanäle festsetzt. Über mehrere Wochen hinweg verabreichten sie Mäusen mit Rückenmarksverletzung den Wirkstoff Pregabalin (PGB). Wie sich herausstellte, ließ diese Behandlung neue Nervenverbindungen entstehen.

„Unsere Studie zeigt, dass die synaptische Verschaltung wie ein Schalter wirkt, der das axonale Wachstum abbremst. Dieser Effekt lässt sich mit einem verfügbaren Medikament beeinflussen“, sagt Bradke. Tatsächlich wird PGB schon jetzt bei Rückenmarksverletzungen eingesetzt. Allerdings als Schmerzmittel und erst relativ spät nachdem die Verletzung stattgefunden hat. „PGB könnte bei Patienten vielleicht einen regenerativen Effekt haben, verabreicht man es früh genug. Daraus könnte sich langfristig ein neuer Ansatz für die Therapie ergeben. Das lässt sich aber jetzt noch nicht einschätzen.“

Ein neuer Mechanismus?

In vorherigen Studien hatten die Bonner Forscher nachgewiesen, dass manche Krebsmedikamente verletzte Nervenverbindung ebenfalls regenerieren lassen. Hauptakteure sind dabei die „Mikrotubuli“, lange Proteinkomplexe, die den Zellkörper stabilisieren. Wenn sie wachsen, treiben auch die Axone aus. Wie hängen die verschiedenen Ergebnisse zusammen? „Wir wissen nicht, ob diese Mechanismen voneinander unabhängig sind oder ob sie ineinandergreifen“, sagt Bradke. „Das wollen wir uns künftig genauer anschauen.“

Originalveröffentlichung
„The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS“, Andrea Tedeschi, Sebastian Dupraz, Claudia J. Laskowski, Jia Xue, Thomas Ulas, Marc Beyer, Joachim L. Schultze, Frank Bradke, Neuron, DOI: http://dx.doi.org/10.1016/j.neuron.2016.09.026

Weitere Informationen:

http://www.dzne.de/ueber-uns/presse/meldungen/2016/pressemitteilung-nr-16.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics