Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bochumer Forscher entdecken Protonendiode: Wasser ist aktives Bauelement in Proteinen

01.09.2010
Bochumer Biophysiker haben eine Diode für Protonen entdeckt: Genau wie das elektronische Bauteil die Flussrichtung des elektrischen Stroms vorgibt, sorgt die „Protonendiode“ dafür, dass Protonen nur in eine Richtung durch eine Zellmembran geschleust werden können. Wassermoleküle spielen dabei als aktive Bauteile der Diode eine wichtige Rolle.
Die Forscher um Prof. Dr. Klaus Gerwert (Lehrstuhl für Biophysik der RUB) konnten das durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen beobachten. Sie berichten in der aktuellen internationalen Online-Ausgabe der Zeitschrift Angewandte Chemie.

Protonen treiben Proteinturbinen an

Die Protonendiode spielt eine wichtige Rolle bei der Energiegewinnung von Zellen. Lichtgetriebene Protonenpumpen – bestimmte Proteine, die die Zellmembran durchspannen – schleusen Protonen aus der Zelle heraus, so dass außen ein Überdruck entsteht, „ganz ähnlich wie der Wasserdruck an einer Staumauer“, verdeutlicht Prof. Gerwert. An anderer Stelle drängen die Protonen wieder in die Zellen hinein um das Konzentrationsgefälle auszugleichen, und treiben dabei die Turbinen der Zelle an, Proteine namens ATP-asen. Die dabei freiwerdende Energie wird umgewandelt in den universellen Kraftstoff der Zellen, ATP (Adenosintriphosphat). „Dieser Ablauf ist eine Art archaische Photosynthese“, erklärt Prof. Gerwert. „Die Lichtenergie wird letztlich in für den Organismus nutzbare Energie umgewandelt.“

Früher glaubte man an Zufall

Die Details dieser Vorgänge sind Gegenstand der Forschung. Besonders die Rolle der Wassermoleküle in Proteinen war lange unklar. „Früher glaubte man, dass die Wassermoleküle durch Zufall in Proteine hineingeraten würden und keine besondere Funktion erfüllten“, so Gerwert. Der in Bochum geborene Manfred Eigen wurde 1967 mit dem Nobelpreis für Chemie ausgezeichnet, weil er erklären konnte, warum Wasser und Eis Protonen extrem schnell leiten können. Die aktuelle Arbeit zeigt, dass auch Proteine genau diesen Mechanismus nutzen und die Wassermoleküle im Protein sehr wohl eine aktive Funktion ausüben.

Wasser ist so wichtig wie Aminosäuren

Dieses Ergebnis unterstützt die von Klaus Gerwert 2006 in Nature aufgestellte Hypothese, dass proteingebundene Wassermoleküle genauso wichtige katalytische Bauelemente für die Funktion von Proteinen sind wie die Aminosäuren, die Baussteine des Lebens. Folgerichtig haben die Bochumer Biophysiker ihre Arbeit in der Angewandten Chemie Manfred Eigen gewidmet. Eigen hatte seine zentrale Arbeit über Protonentransfer in Wasser 1964 ebenfalls in der Angewandten Chemie veröffentlicht. Klaus Gerwert ist durch Manfred Eigen auf seinen Winterseminaren in Klosters inspiriert worden.

Film statt Standbild

Die Bochumer Forscher konnten ihre Ergebnisse in einem interdisziplinären Ansatz durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen erzielen. Diese Kombination zeigt die dynamischen Vorgänge im Protein nach Lichtanregung mit atomarer Auflösung. „Man kann verfolgen, wie das Proton von der zentralen Protonenbindestelle im Innern des Proteins über eine Aminosäure und dann über einen protonierten Wassercluster an die Membranoberfläche transportiert wird“, beschreibt Prof. Gerwert. Der interdisziplinäre Ansatz erweitert jetzt die klassischen Methoden der Strukturbiologie, Röntgenstrukturanalyse und Kernspinresonanzspektroskopie (NMR), da er einen kompletten Film liefert und nicht nur Standbilder von Proteinen. Die Experimente in Bochum wurden durch Computersimulationen in Shanghai ergänzt. Klaus Gerwert ist sowohl Professor an der RUB als auch Direktor am Max-Planck Partner Institut für Computational Biology in Shanghai.

Titelaufnahmen

Wolf, S., Freier, E., Potschies, M., Hofmann, E. and Gerwert, K.: „Directional Proton Transfer in Membrane Proteins Achieved through Protonated Protein-Bound Water Molecules: A Proton Diode“ Angewandte Chemie International Edition, DOI: 10.1002/anie.201001243

Garczarek, F., Gerwert, K.: „Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy“. In: Nature 439, 109-112 (2006)

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik der Ruhr-Universität Bochum, 44780 Bochum, ND 04/596, Tel. 0234/32-24461, gerwert@bph.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

nachricht Bakterieller Kontrollmechanismus zur Anpassung an wechselnde Bedingungen
13.12.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie