Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutgefäße aus dem Drucker

24.08.2011
Gewebe und Organe im Labor zu züchten, daran arbeiten Forscher schon lange.

Mithilfe von Tissue Engineering kann man inzwischen zwar künstliches Gewebe aufbauen, an größeren Organen ist die Wissenschaft bisher aber gescheitert.


Ein Polymerröhrchen, aus dem ein künstliches Blutgefäß werden kann, wird mit Zellmedium gespült. Fraunhofer IGB

Fraunhofer-Forscher entwickeln jetzt im Projekt »BioRap« mit neuartigen Verfahren künstliche Blutgefäße. Diese könnten künftig die Versorgung solcher Organe gewährleisten. Auf der Biotechnica, die vom 11. bis 13. Oktober in Hannover stattfindet, stellen sie ihre Ergebnisse vor.

Mehr als 11 000 Menschen standen allein in Deutschland Anfang dieses Jahres auf der Warteliste für eine Organtransplantation. Doch im Durchschnitt werden kaum halb so viele Transplantationen durchgeführt. Ziel von Tissue Engineering ist es, Organe im Labor herzustellen und hier neue Möglichkeiten zu erschließen. Weil das nötige Gefäßsystem fehlte, ist es Forschern allerdings noch nicht gelungen künstliches Gewebe mit Nährstoffen zu versorgen. Fünf Fraunhofer-Institute haben sich im Jahr 2009 zusammengeschlossen, um biokompatible künstliche Blutgefäße zu entwickeln. Es schien unmöglich, solch kleine und komplexe Strukturen wie Kapillargefäße zu bauen, besonders Verzweigungen und Hohlräume machten den Forschern zu schaffen.

Hilfe kam schließlich aus der Produktionstechnik: Mittels Rapid Prototyping lassen sich Werkstücke direkt nach einem beliebig komplexen 3-D-Modell aufbauen. Nun ist es den Fraunhofer Wissenschaftlern gelungen, diese Technik auch auf elastische Biomaterialien zu übertragen. Dazu kombinierten sie zwei verschiedene Verfahren: die im Rapid Prototyping etablierte 3-D-Drucktechnik und die in der Polymerwissenschaft entwickelte Multiphotonenpolymerisation.

Erfolgreiche Kombination

Der 3-D-Inkjet-Drucker kann sehr schnell dreidimensionale Körper aus den verschiedensten Materialien erzeugen. Er trägt das Material in Schichten auf, nur an bestimmten Stellen werden diese Lagen chemisch verbunden. Damit entstehen bereits Mikrostrukturen, für die feinen Strukturen von Kapillargefäßen ist die 3-D-Drucktechnik jedoch immer noch zu ungenau. Daher kombinierten die Forscher diese Technik mit der Multiphotonenpolymerisation. Kurze, intensive Laserpulse treffen dabei das Material und regen die Moleküle so stark an, dass diese miteinander reagieren und sich zu längeren Ketten verbinden. Das Material polymerisiert und wird fest, es bleibt aber so elastisch wie natürliche Materialien. Diese Reaktion lässt sich derart gezielt steuern, dass der Aufbau von feinsten Strukturen nach einem dreidimensionalen Bauplan möglich ist. »Die einzelnen Techniken funktionieren schon und arbeiten momentan in der Testphase; der Prototyp für die kombinierte Anlage ist im Aufbau«, beschreibt Projektleiter Dr. Günter Tovar vom Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik IGB in Stuttgart den aktuellen Stand der Kooperation.

Wenn aus Tinte Röhren werden

Zur erfolgreichen Herstellung dreidimensionaler elastischer Körper braucht es noch das richtige Material. Deshalb haben die Forscher spezielle Tinten entwickelt, denn die Drucktechnik fordert sehr spezifische Eigenschaften: Die späteren Blutgefäße müssen flexibel und elastisch sein und mit dem natürlichen Gewebe interagieren. Dafür werden die synthetischen Röhrchen nachträglich biofunktionalisiert, so dass lebende Körperzellen an ihnen andocken können. Dazu integrieren die Wissenschaftler modifizierte biologische Strukturen – wie etwa Heparin − und Ankerproteine in die Innenwände. Oft verwenden sie auch Tinten aus Hybridmaterialen, die von vornherein eine Mischung aus synthetischen und natürlichen Polymeren enthalten. In einem zweiten Schritt können sich in den Röhrensystemen Endothelzellen anheften. Diese Zellen bilden im Körper die innerste Wandschicht eines jeden Gefäßes. »Die Auskleidung ist wichtig damit die Bestandteile des Blutes nicht kleben bleiben, sondern weitertransportiert werden«, erklärt Günter Tovar. Nur wenn es gelingt, eine komplette Schicht lebender Zellen anzusiedeln, kann das Gefäß so arbeiten wie seine natürlichen Vorbilder und die Nährstoffe an ihr Ziel dirigieren.

Chancen für die Medizin

Die virtuelle Simulation der fertigen Werkstücke ist ebenso bedeutsam für den Erfolg des Projekts, wie die neuen Materialien und die Herstellungsverfahren. Die Forscher müssen den Aufbau der Strukturen und den Verlauf der Gefäßsysteme genau berechnen, um optimale Fließgeschwindigkeit zu gewährleisten oder einen Stau zu verhindern. Noch stehen die Fraunhofer-Wissenschaftler am Anfang dieser ganz neuen Technologie zum Aufbau elastischer dreidimensional geformter Biomaterialien, doch die Technik bietet die Grundlage für weitere Entwicklungen. »Wir wenden hier erstmalig Rapid Prototyping auf elastische, organische Biomaterialien an. Die Gefäßsysteme illustrieren sehr schön die Möglichkeiten dieser Technologie, aber das ist noch längst nicht alles, was geht«, betont Günter Tovar. Mit den so erzeugten Blutgefäßen ließen sich komplett künstliche Organe an einen Kreislauf anbinden und mit Nährstoffen versorgen. Diese eignen sich dann zwar noch nicht für eine Transplantation, dafür kann der Organkomplex als Testsystem genutzt werden und so Tierversuche ersetzen. Auch die Behandlung von Bypass-Patienten mit künstlichen Gefäßen ist denkbar. Bis Organe aus dem Labor mit eigenen Blutgefäßen tatsächlich implantiert werden, wird es allerdings noch einige Zeit dauern.

An dem Projekt beteiligt sind das Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam, das Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik IGB in Stuttgart, das Fraunhofer-Institut für Lasertechnik ILT in Aachen, das Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in Stuttgart und das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg. Auf der Biotechnica in Halle 9, Stand D10 zeigen sie ein Modell eines künstlichen Gefäßes, das mit Rapid Prototyping-Technik gedruckt wurde.

Weitere Informationen:
Dr. rer. nat. Günter Tovar
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik
Nobelstr. 12
70569 Stuttgart
Telefon +49 711 970-4109
Fax +49 711 970-4300

Birgit Niesing | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.igb.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie