Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Blume verhält sich wie ein Tier

21.08.2012
„Verhalten“ ist eigentlich etwas, was mit Tieren und nicht mit Pflanzen verbunden wird. Blumennesselgewächse verfügen aber über ein außergewöhnlich komplexes Verhaltensrepertoire, um die Fremdbestäubung durch Insekten zu optimieren.
Sie erinnern damit eher an Tiere und sind in ihrer Komplexität im Pflanzenreich unerreicht. Wissenschaftler der Universität Bonn und der Freien Universität Berlin haben detailliert untersucht, auf welche Reize die außergewöhnlichen Pflanzen reagieren. Die Ergebnisse sind nun in der aktuellen Ausgabe der internationalen Online-Fachzeitschrift der Public Library of Science „PLoS ONE“ erschienen.

Die vor allem in Südamerika vorkommenden Blumennesselgewächse sehen mit ihren farbenfrohen, kompliziert gebauten Blüten sehr attraktiv aus. Einige Arten ranken auf Baumriesen in imposante Höhen und sind wegen ihrer stark nesselnden Brennhaare gefürchtet. Doch nicht wegen ihrer gefährlichen Schönheit beeindruckt die Pflanzenfamilie die Wissenschaft, sondern wegen ihres ausgeklügelten Verhaltens. „Blumennesselgewächse haben ihre Bestäubung durch Insekten oder Kolibris mit sehr komplexen Mechanismen zur Perfektion getrieben“, sagt Prof. Dr. Maximilian Weigend, Direktor der Botanischen Gärten der Universität Bonn, der die eigenartige Pflanzenfamilie seit vielen Jahren untersucht.

Jede Pflanze versucht, nicht mit ihrem eigenen Blütenstaub, sondern mit dem Pollen einer Artkollegin bestäubt zu werden. „Die daraus resultierenden Nachkommen tragen neu gemischtes Erbgut und haben dadurch eine größere evolutive Anpassungsfähigkeit“, berichtet Erstautor Dr. Tilo Henning, früherer Doktorand von Prof. Weigend, der am Institut für Biologie, Morphologie und Systematik der Phanerogamen an der Freien Universität Berlin forscht. Wer sich mit zu nahen Verwandten oder nur mit sich selbst fortpflanzt – was im Pflanzenreich möglich ist – betreibt Inzucht und kümmert meist irgendwann dahin.
Kein wertvoller Pollen wird verschwendet

Von Bienen als den häufigsten Bestäubern ist bekannt, wie sie vorgehen, wenn sie in einer Blüte wenig oder keinen Nektar finden: Sie fliegen nicht etwa zur nächsten Blüte an der selben Pflanze weiter, sondern meist gleich eine weitere Strecke und damit mit hoher Wahrscheinlichkeit zu einer Nachbarpflanze. Die Blumennesselgewächse haben sich im Lauf der Evolution optimal an dieses Verhalten angepasst: Damit kein wertvoller Pollen verschwendet wird, stellen die Gewächse in Blüten, in denen der Nektar eben abgesammelt wurde, sofort neuen Blütenstaub bereit. Wie andere Pflanzen auch, locken die Blüten der Blumennesselgewächse mit süßem Nektar, der in speziellen Schuppen am Blütenboden platziert ist. Nascht eine Biene davon, löst sie durch sanften Druck einen ausgeklügelten Mechanismus aus. Darauf neigen sich die Staubgefäße, die an ihren Enden den Pollen beherbergen, zur Blütenmitte.
„Dadurch ist der Revolver gespannt“, beschreibt der Direktor der Botanischen Gärten Bonn das zuerst von dem Bonner Wissenschaftler Prof. Dr. Wittmann 1997 beschriebene Prinzip. „Wenn die nächste Biene kommt, berührt sie die Staubgefäße im Zentrum der Blüte und wird dabei mit Pollen beladen.“ Nektar findet sie nicht, weil bereits ihre Vorgängerin davon genascht hat und der süße Lockstoff nur nach Stunden von der Pflanze nachproduziert wird. Dann macht das Insekt genau das, was es soll: Es fliegt mit frischem Pollen beladen zur nächsten Pflanze und bestäubt dort die Blüten. „Dadurch wird die erwünschte Fremdbestäubung in hohem Maße sichergestellt“, berichtet Dr. Henning.

Das Verhalten der Pflanzen erinnert fast an ein Tier

Während die meisten Pflanzen während der Blütezeit eher passiv bleiben und höchstens bei Regen oder Dunkelheit ihre Blüten schließen, üben die Blumennesseln praktisch eine totale Kontrolle über ihr Pollenangebot aus. „Ihr Verhalten erinnert in seiner Komplexität eher an ein Tier als an Pflanzen“, sagt Prof. Weigend. Die Blumennesseln nehmen zahlreiche Reize aus der Umgebung wahr, verarbeiten diese und stimmen darauf ihr Verhalten ab. Das haben die Bonner und Berliner Wissenschaftler mit aufwändigen Experimenten in der aktuellen Studie herausgefunden. Unter zwölf Grad Celsius oder bei Dunkelheit sind die Staubblätter für Bestäuber nicht zugänglich. Dann sind nämlich keine Bienen unterwegs.

Wie im Magazin eines Revolvers sind mehr als 100 Staubgefäße in der Blüte hintereinander aufgereiht, die ausgelöst durch Insekten oder Kolibris nacheinander zum Zentrum der Blüte klappen. „Damit lässt sich die portionsweise Pollenabgabe in der Blüte rund 100 Mal wiederholen“, berichtet Dr. Henning. Während andere Blüten ihren Blütenstaub in einer oder wenigen Portionen loswerden, können die Blumennesselgewächse so ihren Pollen in zahllosen, immer ungefähr gleich großen Portionen an bis zu hundert verschiedene Besucher abgeben – was die Wahrscheinlichkeit eines erfolgreichen Pollenexports auf eine andere Pflanze dramatisch erhöht.

Wie sehr die Blumennesseln ihr Verhalten an die Bestäuber angepasst haben, zeigt sich auch, wenn kein Insekt vorbeikommt. Dann verlängern die Pflanzen die Lebenszeit ihrer Blüten um ein Vielfaches auf mehr als eine Woche und präsentieren frischen Pollen nur in großen Zeitabständen, um vielleicht doch noch einen Bestäuber anzulocken. Erstaunt waren die Forscher auch, wie schnell sich die Staubgefäße zur Blütenmitte bewegen, nachdem eine Biene die Nektarschuppe bewegt hat: Zwei bis drei Minuten reichen dafür aus. „Man kann die Bewegung mit bloßem Auge beobachten – das ist ganz ungewöhnlich“, sagt Prof. Weigend. „Ein solch komplex gesteuertes Verhalten ist von keiner anderen Pflanzenfamilie bekannt.“ Bei häufigen Blütenbesuchen kann so die Pollenpräsentation auf das bis zu über 30-fache beschleunigt werden.

Der Botanische Garten beherbergt besonders viele Blumennesselarten

Der Botanische Garten der Universität Bonn am Poppelsdorfer Schloss beherbergt 15 der rund 300 bisher bekannten Blumennesselarten. „Das ist einmalig auf der Welt“, sagt Prof. Weigend. Das Saatgut für die Pflanzen bezog er vorrangig von seinen langjährigen Kooperationspartnern in Südamerika. Für Besucher sind Warnschilder aufgestellt, dass die Gewächse ein Brennen auf der Haut und allergische Reaktionen verursachen können. „An die Warnhinweise sollte man sich auch halten“, sagt der Gartendirektor. „Die Härchen auf den Blättern und Stielen brennen wirklich schmerzhaft.“

Publikation: Total control – pollen presentation and floral longevity in Loasaceae (blazing star family) are modulated by light, temperature and visitation rates, PLoS ONE, DOI: 10.1371/journal.pone.0041121

Kontakt:

Prof. Dr. Maximilian Weigend
Direktor der Botanischen Gärten
der Universität Bonn
Tel. 0228/732526 oder 732121
E-Mail: mweigend@uni-bonn.de

Dr. Tilo Henning
Institut für Biologie, Morphologie und Systematik der Phanerogamen
Freie Universität Berlin
Tel. 030/83853159
E-Mail: tilo.henning@fu-berlin.de

Johannes Seiler | idw
Weitere Informationen:
http://www.fu-berlin.de
http://www.uni-bonn.tv/podcasts/20120820_ST_Blumennesselgewaechse.mp4/view
http://www3.uni-bonn.de/Pressemitteilungen/209-2012

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie