Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blüte im richtigen Alter

31.05.2013
Alpen-Gänsekresse blüht nur, wenn sie das richtige Alter hat und zuvor Kälte ausgesetzt war
Mehrjährige Pflanzen blühen erst ab einem gewissen Alter und nachdem sie der Kälte ausgesetzt waren. Beides verhindert, dass sie schon im Winter Blüten ansetzen. George Coupland und seine Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln haben jetzt herausgefunden, dass die Alpen-Gänsekresse ihr Alter über die Menge einer kurzen Ribonukleinsäure bestimmt.

Mehrjährige Pflanzen müssen wegen der vielen vor ihnen liegenden Blühperioden mit ihren Kräften haushalten. Sie blühen nicht, wenn sie noch zu jung und zu schmächtig sind. Sie schmücken nicht sämtliche Seitentriebe mit einem reichhaltigen Flor. Sie blühen nicht zur Unzeit und wachsen nach der Blüte weiter. Den Winter umgehen sie, indem sie erst nach der Kälteperiode Blütenknospen ansetzen. Diese Abhängigkeit von einem Kältereiz wird als Vernalisation bezeichnet.
George Coupland, Sara Bergonzi, Maria Albani sowie weitere Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung haben nun die molekularen Signale identifiziert, mit denen die mehrjährige Alpen-Gänsekresse (Arabis alpina) ihr Alter registriert und die Vernalisationskälte erfasst. Erst wenn das richtige Alter erreicht ist und die Kälte eingewirkt hat, kann die Blütenbildung beginnen.

Ihr Alter misst die Alpen-Gänsekresse über die Konzentration einer kurzen Ribonukleinsäure, die als miR156 bezeichnet wird. Diese rein regulatorisch wirkende Nukleinsäure funktioniert wie eine Sanduhr. So wie die Körner einer Sanduhr verrinnen und die verstrichene Zeit angeben, nimmt die Konzentration der Ribonukleinsäure in der Alpen-Gänsekresse von Woche zu Woche ab und gibt dadurch Auskunft über deren Alter. Erreicht die Ribonukleinsäure einen Tiefpunkt, ist die Pflanze alt genug für die Blütenbildung und empfänglich für den Kältereiz.

„Unter normalen Bedingungen ist dieser Punkt fünf bis sechs Wochen nach dem Auskeimen erreicht“, sagt George Coupland. „Wir können das Blühen und die Wirkung der Vernalisation allein dadurch verschieben, dass wir die miR156-Konzentration manipulieren“ Produziert die Alpen-Gänsekresse wegen eines gentechnischen Tricks besonders viel miR156, blüht sie nicht zur üblichen Zeit. Der durch die Überproduktion vorhandene Überschuss an miR156 sitzt wie ein Bremsklotz auf einer Gruppe von Proteinen, die die Blütenbildung induzieren.
Wird wegen eines gentechnischen Tricks weniger miR156 als üblich gebildet, verkürzt sich die Zeit bis zur Blütenbildung. Die Alpen-Gänsekresse ist schon drei Wochen nach dem Auskeinem für den Kältereiz empfänglich und blüht danach auch. Normalerweise ist sie in diesem Alter noch zu jung dafür. Die Ribonukleinsäure ist folglich der wichtigste Taktgeber bei der Blütenbildung der Alpen-Gänsekresse. Erst wenn sie ihren Tiefpunkt erreicht hat, greift die Vernalisation.

Die einjährige Modelpflanze Arabidopsis thaliana verwendet die Ribonukleinsäure weniger verbindlich. Bei sehr guten Wetterverhältnissen blüht sie auch in Anwesenheit einer größeren miR156-Menge. Nur bei dauerhaft schlechtem Wetter verlässt sie sich auf ihr Alter und wartet mit der Blütenbildung bis die Ribonukleinsäure ihren Tiefpunkt erreicht hat. „Dadurch wird sichergestellt, dass Arabidopsis auch in einem grauen und kalten Sommer blüht“, erklärt Coupland. Als einjährige Pflanze muss sie alles auf eine Karte setzen und so schnell wie möglich zu einer verschwenderischen Blütenpracht gelangen und Samen bilden. Die Konzentration von miR156 wird bei günstigen Umweltbedingungen einfach übersteuert. Mehrjährige Pflanzen halten sich dagegen strikt an Alter und Vernalisation.

Mit miR156 lässt sich auch erklären, warum bei der Alpen-Gänsekresse nicht alle Seitentreibe gleichzeitig blühen. Die Verzweigungen entstehen nach und nach und sind deshalb nicht alle genauso alt wie der Hauptspross, der zuerst blüht. Die miR156-Konzentration muss in jedem einzelnen Seitenspross einen Tiefpunkt erreichen, damit er für den Kältereiz empfänglich wird und eine Blüte bildet. Diese Altersstaffelung sorgt dafür, dass jedes Jahr einige Sprossachsen blühen und andere erst nach dem Winter in der nächsten Saison blühen werden.

Wie registriert die Alpen-Gänsekresse nun den Kältereiz? Auch dieser Frage sind Coupland und seine Kollegen nachgegangen. Sie konnten zeigen, dass miR156 damit nichts zu tun hat. Die Einwirkung der Kälte führt dazu, dass ein anderes Protein mit Bremswirkung auf die Blütenbildung von der Bildfläche verschwindet. Dieses Protein trägt den kryptischen Namen PEP1. Es blockiert ein wichtiges Blüh-Gen. Erst wenn PEP1 in der Kälte des Winters zerfallen ist, kann dieses Gen abgelesen werden.

Was ist der praktische Nutzen dieser Forschung? „Wir können die Konzentration an miR156 so manipulieren, dass Pflanzen schneller blühen. Das könnte die Züchtung beschleunigen“, sagt Coupland. „Zum Beispiel die Züchtung neuer Kohlsorten, etwa Blumenkohl, Weißkohl oder Grünkohl. Auch diese Kreuzblütengewächse durchlaufen eine lange Phase der Juvenilität.“
Originalpublikation:
Sara Bergonzi, Maria C Albani, Emiel Ver Loren van Themaat, Karl JV Nordström, Rhenhou Wang, Kobinian Schneeberger, Perry D. Moerland und George Coupland
Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina
Science, 31. May 2013; 340: 1094-1097

Ansprechpartner:
Prof. Dr. George Coupland
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon: +49 221 5062-205
E-Mail: coupland@­mpipz.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.­mpipz.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz