Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blockcopolymer-Mizellisierung als Schutzstrategie für DNA-Origami

16.03.2017

Wissenschaftler des Center for Advancing Electronics Dresden / TU Dresden und der Universität Tokyo unter der Leitung von Thorsten L. Schmidt (cfaed) haben eine Methode zum Schutz von DNA-Origami vor dem Abbau in biologischen Medien entwickelt. Diese Strategie ermöglicht zukünftige Anwendungen in der Nanomedizin und Zellbiologie.

Die genaue Anordnung einzelner Moleküle ist grundsätzlich sehr schwierig. DNA-Nanotechnologie ermöglicht die Synthese Nanometer-großer Objekte mit programmierbaren Formen aus synthetischen DNA-Fragmenten.


Polyplex Abstract

cfaed

Eine der am häufigsten genutzten Methoden in diesem Forschungsfeld ist die sogenannte DNA-Origami-Technik, welche die Herstellung von Nanostrukturen mit nahezu beliebigen Formen ermöglicht. Diese sind um ein Tausendfaches kleiner als der Durchmesser eines menschlichen Haares. Sie können punktgenau mit zahlreichen weiteren Materialen funktionalisiert werden, wie z.B. Eiweißmolekülen, Antikörpern, Wirkstoff-Molekülen oder anorganischen Nanopartikeln, so dass definierte Geometrien bzw. Abstände mit Genauigkeiten im Nanometerbereich einstellbar sind.

Dank dieser einzigartigen Kontrolle von Materialien im Nanometerbereich sind DNA-Nanostrukturen auch für Anwendungen in der Molekularbiologie und Nanomedizin attraktiv. So könnten Nanostrukturen beispielsweise als programmierbare Wirkstoffträger oder Diagnoseeinheiten eingesetzt werden, oder die Reaktion von Zellen auf präzise eingebrachte Moleküle untersucht werden.

Diese künstlichen DNA-Nanostrukturen benötigen allerdings etwa 10-fach höhere Salzkonzentrationen, als in Körperflüssigkeiten oder Zellkulturmedien vorliegen, damit die Form und damit die Funktionalität erhalten bleibt. Darüber hinaus können sie sehr schnell von speziellen Enzymen (Nukleasen) abgebaut werden, welche in menschlichen Körperflüssigkeiten wie Blut oder Speichel zu finden sind. Diese Instabilität schränkt biologische oder medizinische Anwendungen ein.

Aus diesem Grunde überzog ein Team unter Leitung von cfaed-Forschungsgruppenleiter Dr. Thorsten L. Schmidt (Technische Universität Dresden) DNA-Origamistrukturen mit einem synthetischen Polymer. Dieses besteht aus zwei Segmenten: einem kurzen positiv geladenen Abschnitt, welcher das Polymer elektrostatisch an der negativ geladenen DNA-Nanostruktur anheftet, und einer langen ungeladenen Polymerkette, welche die gesamte Nanostruktur ähnlich einem Pelz einhüllt.

Die Wissenschaftler konnten zeigen, dass solche von Polymeren bedeckten DNA-Nanostrukturen vor Nuklease-Abbau und niedrigen Salzkonzentrationen geschützt waren. Zudem konnten sie nachweisen, dass mit Nanopartikeln funktionalisierte Nanostrukturen mittels derselben Methode geschützt werden können. Seine Forschungsergebnisse veröffentlichte das Team unter dem Titel: “Block Copolymer Micellization as a Protection Strategy for DNA Origami” in der Fachzeitschrift Angewandte Chemie [DOI: 10.1002/anie.201608873].

Diese unkomplizierte, kosteneffektive und robuste Methode zum Schutz von DNA-basierten Strukturen könnte biologische und nanomedizische Anwendungen in Bereichen ermöglichen, in welchen „ungeschützte“ DNA-Origami nicht stabil wären.

Paper:
Block Copolymer Micellization as a Protection Strategy for DNA Origami
Authors: Nayan P. Agarwal [a]; Michael Matthies [a]; Fatih N. Gür [a]; Kensuke Osada [b]; Thorsten L. Schmidt [a]
[a] Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden
[b] Prof. Dr. Kensuke Osada, Department of Bioengineering, University of Tokyo
[DOI: 10.1002/anie.201608873]

Pressebild:
HiRes download: http://bit.ly/2nyQrrZ

Pressekontakt:
Thorsten-Lars Schmidt, PhD.
Gruppenleiter DNA Chemistry
E-mail: thorsten-lars.schmidt@tu-dresden.de

Matthias Hahndorf
cfaed Communications Officer
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de

Über das cfaed
Zum Exzellenzcluster für Mikroelektronik der Technischen Universität Dresden gehören elf Forschungsinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute und das Helmholtz-Zentrum Dresden-Rossendorf. Auf neun verschiedenen Pfaden forschen rund 300 Wissenschaftler nach neuartigen Technologien für die elektronische Informationsverarbeitung. Sie verwenden dabei innovative Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte, wie den chemischen Chip oder Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.

www.cfaed.tu-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie