Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinkende Nervenzellen verraten Gedanken

05.05.2010
Max-Planck-Forscher messen Gehirnsignale mit genetisch implantierter Lichtquelle

Elektrische Ströme sind für das menschliche Auge unsichtbar – zumindest wenn sie durch Kabel aus Metall fließen. In Nervenzellen können Wissenschaftler elektrische Signale dagegen sichtbar machen.

Zusammen mit Kollegen aus der Schweiz und Japan haben Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg die elektrische Aktivität von Nervenzellen im intakten Gehirn von Mäusen sichtbar gemacht. In einer bahnbrechenden Studie konnten die Forscher nun die Aktivität von Nervenzellen mit Hilfe fluoreszierender Kalzium-Indikatorproteine bei komplexen Verhaltensweisen beobachten. (Frontiers in Neural Circuits, 29. April 2010)

Nervenzellen kommunizieren miteinander über so genannte Aktionspotenziale. Dabei öffnen sich spannungsgesteuerte Kanäle und Kalzium-Ionen strömen sehr schnell in die Zelle. Wegen dieser engen Beziehung können fluoreszierende Kalzium-Indikatorproteine Aktionspotenziale sichtbar machen. Diese Proteine besitzen zwei fluoreszierende Untereinheiten, die entweder gelbes oder blaues Licht abstrahlen. Sobald die Proteine Kalzium binden, verändert sich das Verhältnis von blauem zu gelbem Licht. Sich verändernde Kalzium-Konzentrationen lassen sich so an einer Farbverschiebung von blauem hin zu gelbem Licht ablesen – daher der Name „Chamäleon“.

Optische Messung von Aktionspotenzialen

Mit dem Chamäleon-Protein YC3.60, einer neueren Variante, gelang den Forschern, im intakten Gehirn von Mäusen die Reaktion von Nervenzellen auf sensorische Reize aufzuzeichnen: Auf jede Auslenkung der Schnurrhaare durch einen Luftstoß folgte ein Farbwechsel der Chamäleon-Proteine in den Nervenzellen der sensorischen Hirnrinde. Die betroffenen Zellen hatten folglich auf den Reiz mit Aktionspotenzialen reagiert. „Mit dem Chamäleon-Protein YC3.60 können wir Aktionspotenziale nicht nur in Hirnschnitten, sondern auch im unverletzten Gehirn messen. Das Molekül reagiert schnell und empfindlich und erfasst auch schnell aufeinander folgende Änderungen der Kalzium-Konzentrationen“, erklärt Mazahir Hasan vom Max-Planck-Institut für medizinische Forschung.

Die Forscher konnten aber nicht nur die Aktivität einzelner Zellen sondern auch von Nervenzellgruppen untersuchen. „YC3.60 hat sich damit als geeignetes Werkzeug erwiesen, um Nervengewebe auf unterschiedlichen Ebenen zu untersuchen: Einerseits können wir die Kalzium-Schwankungen verfolgen und so auf die Entstehung und Weiterleitung von Aktionspotenzialen innerhalb von Nervenzellen schließen. Noch besser ist, dass wir gleichzeitig die Aktivität einzelner neuronaler Schaltkreise und ganzer Gehirnregionen messen können“, sagt Mazahir Hasan. Die Forscher wollen deshalb als nächstes Chamäleon-Proteine in einer ganz bestimmten Schicht der Hirnrinde oder in unterschiedlichen Typen von Nervenzellen einbringen. „Dann können wir vielleicht verstehen, wie unterschiedliche Nervenzellen in neuronalen Schaltkreisen komplexe Verhaltensweisen erzeugen“, hofft Mazahir Hasan.

Messungen ohne Elektroden

Chamäleon-Proteine könnten also künftig die Untersuchung der elektrischen Aktivität im Gehirn revolutionieren. Denn bisher mussten Wissenschaftler dazu Elektroden in das Nervengewebe oder in Zellen einführen. Elektroden können jedoch nicht zwischen Zelltypen unterscheiden und schädigen das Gewebe. Die Farbänderungen der Chamäleon-Proteine können dagegen mit Glasfasern als Lichtleiter bzw. modernen Fluoreszenz-Mikroskopen – so genannten Zwei-Photonen-Laser-Scanning-Mikroskopen – deutlich schonender beobachtet werden. Zudem können Chamäleon-Proteine von den Zellen selbst gebildet werden, wenn zuvor ein entsprechender DNA-Abschnitt in das Erbgut eingebracht wurde. In den Experimenten der Forscher dienten Viren als Fähre, um die Erbinformation für die Chamäleon-Proteine in die Nervenzellen zu schleusen.

In früheren Studien war es einem internationalen Forscherteam um Mazahir Hasan erstmalig gelungen, Sinnesreize wie Berührungen oder Geruch mit Hilfe ähnlicher genetischer Sonden in Form von charakteristischen Aktivitätsmustern wahrzunehmen (Hasan et al., 2004). Später gelang dies sogar auf der Ebene einzelner Zellen und Aktionspotenziale (Wallace et al., 2008). In der aktuellen Arbeit mit YC3.60 konnten die Wissenschaftler nun die Aktivität vieler Nervenzellen gleichzeitig über einen langen Zeitraum oder sogar in sich frei bewegenden Tieren aufzeichnen.

Wissenschaftler können also künftig mit Licht untersuchen, wie die Aktivität von Nervenzellen komplexe Verhaltensweisen hervorruft und wie Gedächtnisinhalte entstehen und wieder verloren gehen. Außerdem lässt sich mit dieser Technik analysieren, wie sich die Aktivität von Nervenzellen im Alter oder bei Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie verändert.

Originalveröffentlichung

Original work:

Henry Lütcke, Masanori Murayama, Thomas Hahn, David J. Margolis, Simone Astori, Stephan Meyer zum Alten Borgloh, Werner Göbel, Ying Yang, Wannan Tang, Sebastian Kügler, Rolf Sprengel, Takeharu Nagai, Atsushi Miyawaki, Matthew E. Larkum, Fritjof Helmchen and Mazahir T. Hasan
Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice.

Frontiers in Neural Circuits, 29 April 2010. (doi: 10.3389/fncir.2010.00009)

Kontakt
Dr. Mazahir T. Hasan
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: +49-6221-486617
mazahir.hasan@mpimf-heidelberg.mpg.de
http://wmn.mpimf-heidelberg.mpg.de/hasan

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie