Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinkende Nervenzellen verraten Gedanken

05.05.2010
Max-Planck-Forscher messen Gehirnsignale mit genetisch implantierter Lichtquelle

Elektrische Ströme sind für das menschliche Auge unsichtbar – zumindest wenn sie durch Kabel aus Metall fließen. In Nervenzellen können Wissenschaftler elektrische Signale dagegen sichtbar machen.

Zusammen mit Kollegen aus der Schweiz und Japan haben Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg die elektrische Aktivität von Nervenzellen im intakten Gehirn von Mäusen sichtbar gemacht. In einer bahnbrechenden Studie konnten die Forscher nun die Aktivität von Nervenzellen mit Hilfe fluoreszierender Kalzium-Indikatorproteine bei komplexen Verhaltensweisen beobachten. (Frontiers in Neural Circuits, 29. April 2010)

Nervenzellen kommunizieren miteinander über so genannte Aktionspotenziale. Dabei öffnen sich spannungsgesteuerte Kanäle und Kalzium-Ionen strömen sehr schnell in die Zelle. Wegen dieser engen Beziehung können fluoreszierende Kalzium-Indikatorproteine Aktionspotenziale sichtbar machen. Diese Proteine besitzen zwei fluoreszierende Untereinheiten, die entweder gelbes oder blaues Licht abstrahlen. Sobald die Proteine Kalzium binden, verändert sich das Verhältnis von blauem zu gelbem Licht. Sich verändernde Kalzium-Konzentrationen lassen sich so an einer Farbverschiebung von blauem hin zu gelbem Licht ablesen – daher der Name „Chamäleon“.

Optische Messung von Aktionspotenzialen

Mit dem Chamäleon-Protein YC3.60, einer neueren Variante, gelang den Forschern, im intakten Gehirn von Mäusen die Reaktion von Nervenzellen auf sensorische Reize aufzuzeichnen: Auf jede Auslenkung der Schnurrhaare durch einen Luftstoß folgte ein Farbwechsel der Chamäleon-Proteine in den Nervenzellen der sensorischen Hirnrinde. Die betroffenen Zellen hatten folglich auf den Reiz mit Aktionspotenzialen reagiert. „Mit dem Chamäleon-Protein YC3.60 können wir Aktionspotenziale nicht nur in Hirnschnitten, sondern auch im unverletzten Gehirn messen. Das Molekül reagiert schnell und empfindlich und erfasst auch schnell aufeinander folgende Änderungen der Kalzium-Konzentrationen“, erklärt Mazahir Hasan vom Max-Planck-Institut für medizinische Forschung.

Die Forscher konnten aber nicht nur die Aktivität einzelner Zellen sondern auch von Nervenzellgruppen untersuchen. „YC3.60 hat sich damit als geeignetes Werkzeug erwiesen, um Nervengewebe auf unterschiedlichen Ebenen zu untersuchen: Einerseits können wir die Kalzium-Schwankungen verfolgen und so auf die Entstehung und Weiterleitung von Aktionspotenzialen innerhalb von Nervenzellen schließen. Noch besser ist, dass wir gleichzeitig die Aktivität einzelner neuronaler Schaltkreise und ganzer Gehirnregionen messen können“, sagt Mazahir Hasan. Die Forscher wollen deshalb als nächstes Chamäleon-Proteine in einer ganz bestimmten Schicht der Hirnrinde oder in unterschiedlichen Typen von Nervenzellen einbringen. „Dann können wir vielleicht verstehen, wie unterschiedliche Nervenzellen in neuronalen Schaltkreisen komplexe Verhaltensweisen erzeugen“, hofft Mazahir Hasan.

Messungen ohne Elektroden

Chamäleon-Proteine könnten also künftig die Untersuchung der elektrischen Aktivität im Gehirn revolutionieren. Denn bisher mussten Wissenschaftler dazu Elektroden in das Nervengewebe oder in Zellen einführen. Elektroden können jedoch nicht zwischen Zelltypen unterscheiden und schädigen das Gewebe. Die Farbänderungen der Chamäleon-Proteine können dagegen mit Glasfasern als Lichtleiter bzw. modernen Fluoreszenz-Mikroskopen – so genannten Zwei-Photonen-Laser-Scanning-Mikroskopen – deutlich schonender beobachtet werden. Zudem können Chamäleon-Proteine von den Zellen selbst gebildet werden, wenn zuvor ein entsprechender DNA-Abschnitt in das Erbgut eingebracht wurde. In den Experimenten der Forscher dienten Viren als Fähre, um die Erbinformation für die Chamäleon-Proteine in die Nervenzellen zu schleusen.

In früheren Studien war es einem internationalen Forscherteam um Mazahir Hasan erstmalig gelungen, Sinnesreize wie Berührungen oder Geruch mit Hilfe ähnlicher genetischer Sonden in Form von charakteristischen Aktivitätsmustern wahrzunehmen (Hasan et al., 2004). Später gelang dies sogar auf der Ebene einzelner Zellen und Aktionspotenziale (Wallace et al., 2008). In der aktuellen Arbeit mit YC3.60 konnten die Wissenschaftler nun die Aktivität vieler Nervenzellen gleichzeitig über einen langen Zeitraum oder sogar in sich frei bewegenden Tieren aufzeichnen.

Wissenschaftler können also künftig mit Licht untersuchen, wie die Aktivität von Nervenzellen komplexe Verhaltensweisen hervorruft und wie Gedächtnisinhalte entstehen und wieder verloren gehen. Außerdem lässt sich mit dieser Technik analysieren, wie sich die Aktivität von Nervenzellen im Alter oder bei Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie verändert.

Originalveröffentlichung

Original work:

Henry Lütcke, Masanori Murayama, Thomas Hahn, David J. Margolis, Simone Astori, Stephan Meyer zum Alten Borgloh, Werner Göbel, Ying Yang, Wannan Tang, Sebastian Kügler, Rolf Sprengel, Takeharu Nagai, Atsushi Miyawaki, Matthew E. Larkum, Fritjof Helmchen and Mazahir T. Hasan
Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice.

Frontiers in Neural Circuits, 29 April 2010. (doi: 10.3389/fncir.2010.00009)

Kontakt
Dr. Mazahir T. Hasan
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: +49-6221-486617
mazahir.hasan@mpimf-heidelberg.mpg.de
http://wmn.mpimf-heidelberg.mpg.de/hasan

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie