Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinkende Nervenzellen verraten Gedanken

05.05.2010
Max-Planck-Forscher messen Gehirnsignale mit genetisch implantierter Lichtquelle

Elektrische Ströme sind für das menschliche Auge unsichtbar – zumindest wenn sie durch Kabel aus Metall fließen. In Nervenzellen können Wissenschaftler elektrische Signale dagegen sichtbar machen.

Zusammen mit Kollegen aus der Schweiz und Japan haben Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg die elektrische Aktivität von Nervenzellen im intakten Gehirn von Mäusen sichtbar gemacht. In einer bahnbrechenden Studie konnten die Forscher nun die Aktivität von Nervenzellen mit Hilfe fluoreszierender Kalzium-Indikatorproteine bei komplexen Verhaltensweisen beobachten. (Frontiers in Neural Circuits, 29. April 2010)

Nervenzellen kommunizieren miteinander über so genannte Aktionspotenziale. Dabei öffnen sich spannungsgesteuerte Kanäle und Kalzium-Ionen strömen sehr schnell in die Zelle. Wegen dieser engen Beziehung können fluoreszierende Kalzium-Indikatorproteine Aktionspotenziale sichtbar machen. Diese Proteine besitzen zwei fluoreszierende Untereinheiten, die entweder gelbes oder blaues Licht abstrahlen. Sobald die Proteine Kalzium binden, verändert sich das Verhältnis von blauem zu gelbem Licht. Sich verändernde Kalzium-Konzentrationen lassen sich so an einer Farbverschiebung von blauem hin zu gelbem Licht ablesen – daher der Name „Chamäleon“.

Optische Messung von Aktionspotenzialen

Mit dem Chamäleon-Protein YC3.60, einer neueren Variante, gelang den Forschern, im intakten Gehirn von Mäusen die Reaktion von Nervenzellen auf sensorische Reize aufzuzeichnen: Auf jede Auslenkung der Schnurrhaare durch einen Luftstoß folgte ein Farbwechsel der Chamäleon-Proteine in den Nervenzellen der sensorischen Hirnrinde. Die betroffenen Zellen hatten folglich auf den Reiz mit Aktionspotenzialen reagiert. „Mit dem Chamäleon-Protein YC3.60 können wir Aktionspotenziale nicht nur in Hirnschnitten, sondern auch im unverletzten Gehirn messen. Das Molekül reagiert schnell und empfindlich und erfasst auch schnell aufeinander folgende Änderungen der Kalzium-Konzentrationen“, erklärt Mazahir Hasan vom Max-Planck-Institut für medizinische Forschung.

Die Forscher konnten aber nicht nur die Aktivität einzelner Zellen sondern auch von Nervenzellgruppen untersuchen. „YC3.60 hat sich damit als geeignetes Werkzeug erwiesen, um Nervengewebe auf unterschiedlichen Ebenen zu untersuchen: Einerseits können wir die Kalzium-Schwankungen verfolgen und so auf die Entstehung und Weiterleitung von Aktionspotenzialen innerhalb von Nervenzellen schließen. Noch besser ist, dass wir gleichzeitig die Aktivität einzelner neuronaler Schaltkreise und ganzer Gehirnregionen messen können“, sagt Mazahir Hasan. Die Forscher wollen deshalb als nächstes Chamäleon-Proteine in einer ganz bestimmten Schicht der Hirnrinde oder in unterschiedlichen Typen von Nervenzellen einbringen. „Dann können wir vielleicht verstehen, wie unterschiedliche Nervenzellen in neuronalen Schaltkreisen komplexe Verhaltensweisen erzeugen“, hofft Mazahir Hasan.

Messungen ohne Elektroden

Chamäleon-Proteine könnten also künftig die Untersuchung der elektrischen Aktivität im Gehirn revolutionieren. Denn bisher mussten Wissenschaftler dazu Elektroden in das Nervengewebe oder in Zellen einführen. Elektroden können jedoch nicht zwischen Zelltypen unterscheiden und schädigen das Gewebe. Die Farbänderungen der Chamäleon-Proteine können dagegen mit Glasfasern als Lichtleiter bzw. modernen Fluoreszenz-Mikroskopen – so genannten Zwei-Photonen-Laser-Scanning-Mikroskopen – deutlich schonender beobachtet werden. Zudem können Chamäleon-Proteine von den Zellen selbst gebildet werden, wenn zuvor ein entsprechender DNA-Abschnitt in das Erbgut eingebracht wurde. In den Experimenten der Forscher dienten Viren als Fähre, um die Erbinformation für die Chamäleon-Proteine in die Nervenzellen zu schleusen.

In früheren Studien war es einem internationalen Forscherteam um Mazahir Hasan erstmalig gelungen, Sinnesreize wie Berührungen oder Geruch mit Hilfe ähnlicher genetischer Sonden in Form von charakteristischen Aktivitätsmustern wahrzunehmen (Hasan et al., 2004). Später gelang dies sogar auf der Ebene einzelner Zellen und Aktionspotenziale (Wallace et al., 2008). In der aktuellen Arbeit mit YC3.60 konnten die Wissenschaftler nun die Aktivität vieler Nervenzellen gleichzeitig über einen langen Zeitraum oder sogar in sich frei bewegenden Tieren aufzeichnen.

Wissenschaftler können also künftig mit Licht untersuchen, wie die Aktivität von Nervenzellen komplexe Verhaltensweisen hervorruft und wie Gedächtnisinhalte entstehen und wieder verloren gehen. Außerdem lässt sich mit dieser Technik analysieren, wie sich die Aktivität von Nervenzellen im Alter oder bei Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie verändert.

Originalveröffentlichung

Original work:

Henry Lütcke, Masanori Murayama, Thomas Hahn, David J. Margolis, Simone Astori, Stephan Meyer zum Alten Borgloh, Werner Göbel, Ying Yang, Wannan Tang, Sebastian Kügler, Rolf Sprengel, Takeharu Nagai, Atsushi Miyawaki, Matthew E. Larkum, Fritjof Helmchen and Mazahir T. Hasan
Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice.

Frontiers in Neural Circuits, 29 April 2010. (doi: 10.3389/fncir.2010.00009)

Kontakt
Dr. Mazahir T. Hasan
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: +49-6221-486617
mazahir.hasan@mpimf-heidelberg.mpg.de
http://wmn.mpimf-heidelberg.mpg.de/hasan

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops