Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinkende Nervenzellen verraten Gedanken

05.05.2010
Max-Planck-Forscher messen Gehirnsignale mit genetisch implantierter Lichtquelle

Elektrische Ströme sind für das menschliche Auge unsichtbar – zumindest wenn sie durch Kabel aus Metall fließen. In Nervenzellen können Wissenschaftler elektrische Signale dagegen sichtbar machen.

Zusammen mit Kollegen aus der Schweiz und Japan haben Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg die elektrische Aktivität von Nervenzellen im intakten Gehirn von Mäusen sichtbar gemacht. In einer bahnbrechenden Studie konnten die Forscher nun die Aktivität von Nervenzellen mit Hilfe fluoreszierender Kalzium-Indikatorproteine bei komplexen Verhaltensweisen beobachten. (Frontiers in Neural Circuits, 29. April 2010)

Nervenzellen kommunizieren miteinander über so genannte Aktionspotenziale. Dabei öffnen sich spannungsgesteuerte Kanäle und Kalzium-Ionen strömen sehr schnell in die Zelle. Wegen dieser engen Beziehung können fluoreszierende Kalzium-Indikatorproteine Aktionspotenziale sichtbar machen. Diese Proteine besitzen zwei fluoreszierende Untereinheiten, die entweder gelbes oder blaues Licht abstrahlen. Sobald die Proteine Kalzium binden, verändert sich das Verhältnis von blauem zu gelbem Licht. Sich verändernde Kalzium-Konzentrationen lassen sich so an einer Farbverschiebung von blauem hin zu gelbem Licht ablesen – daher der Name „Chamäleon“.

Optische Messung von Aktionspotenzialen

Mit dem Chamäleon-Protein YC3.60, einer neueren Variante, gelang den Forschern, im intakten Gehirn von Mäusen die Reaktion von Nervenzellen auf sensorische Reize aufzuzeichnen: Auf jede Auslenkung der Schnurrhaare durch einen Luftstoß folgte ein Farbwechsel der Chamäleon-Proteine in den Nervenzellen der sensorischen Hirnrinde. Die betroffenen Zellen hatten folglich auf den Reiz mit Aktionspotenzialen reagiert. „Mit dem Chamäleon-Protein YC3.60 können wir Aktionspotenziale nicht nur in Hirnschnitten, sondern auch im unverletzten Gehirn messen. Das Molekül reagiert schnell und empfindlich und erfasst auch schnell aufeinander folgende Änderungen der Kalzium-Konzentrationen“, erklärt Mazahir Hasan vom Max-Planck-Institut für medizinische Forschung.

Die Forscher konnten aber nicht nur die Aktivität einzelner Zellen sondern auch von Nervenzellgruppen untersuchen. „YC3.60 hat sich damit als geeignetes Werkzeug erwiesen, um Nervengewebe auf unterschiedlichen Ebenen zu untersuchen: Einerseits können wir die Kalzium-Schwankungen verfolgen und so auf die Entstehung und Weiterleitung von Aktionspotenzialen innerhalb von Nervenzellen schließen. Noch besser ist, dass wir gleichzeitig die Aktivität einzelner neuronaler Schaltkreise und ganzer Gehirnregionen messen können“, sagt Mazahir Hasan. Die Forscher wollen deshalb als nächstes Chamäleon-Proteine in einer ganz bestimmten Schicht der Hirnrinde oder in unterschiedlichen Typen von Nervenzellen einbringen. „Dann können wir vielleicht verstehen, wie unterschiedliche Nervenzellen in neuronalen Schaltkreisen komplexe Verhaltensweisen erzeugen“, hofft Mazahir Hasan.

Messungen ohne Elektroden

Chamäleon-Proteine könnten also künftig die Untersuchung der elektrischen Aktivität im Gehirn revolutionieren. Denn bisher mussten Wissenschaftler dazu Elektroden in das Nervengewebe oder in Zellen einführen. Elektroden können jedoch nicht zwischen Zelltypen unterscheiden und schädigen das Gewebe. Die Farbänderungen der Chamäleon-Proteine können dagegen mit Glasfasern als Lichtleiter bzw. modernen Fluoreszenz-Mikroskopen – so genannten Zwei-Photonen-Laser-Scanning-Mikroskopen – deutlich schonender beobachtet werden. Zudem können Chamäleon-Proteine von den Zellen selbst gebildet werden, wenn zuvor ein entsprechender DNA-Abschnitt in das Erbgut eingebracht wurde. In den Experimenten der Forscher dienten Viren als Fähre, um die Erbinformation für die Chamäleon-Proteine in die Nervenzellen zu schleusen.

In früheren Studien war es einem internationalen Forscherteam um Mazahir Hasan erstmalig gelungen, Sinnesreize wie Berührungen oder Geruch mit Hilfe ähnlicher genetischer Sonden in Form von charakteristischen Aktivitätsmustern wahrzunehmen (Hasan et al., 2004). Später gelang dies sogar auf der Ebene einzelner Zellen und Aktionspotenziale (Wallace et al., 2008). In der aktuellen Arbeit mit YC3.60 konnten die Wissenschaftler nun die Aktivität vieler Nervenzellen gleichzeitig über einen langen Zeitraum oder sogar in sich frei bewegenden Tieren aufzeichnen.

Wissenschaftler können also künftig mit Licht untersuchen, wie die Aktivität von Nervenzellen komplexe Verhaltensweisen hervorruft und wie Gedächtnisinhalte entstehen und wieder verloren gehen. Außerdem lässt sich mit dieser Technik analysieren, wie sich die Aktivität von Nervenzellen im Alter oder bei Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie verändert.

Originalveröffentlichung

Original work:

Henry Lütcke, Masanori Murayama, Thomas Hahn, David J. Margolis, Simone Astori, Stephan Meyer zum Alten Borgloh, Werner Göbel, Ying Yang, Wannan Tang, Sebastian Kügler, Rolf Sprengel, Takeharu Nagai, Atsushi Miyawaki, Matthew E. Larkum, Fritjof Helmchen and Mazahir T. Hasan
Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice.

Frontiers in Neural Circuits, 29 April 2010. (doi: 10.3389/fncir.2010.00009)

Kontakt
Dr. Mazahir T. Hasan
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: +49-6221-486617
mazahir.hasan@mpimf-heidelberg.mpg.de
http://wmn.mpimf-heidelberg.mpg.de/hasan

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics