Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinde Fliegen ohne Recycling: Wie Drosophila den Botenstoff Histamin wiederverwertet

13.03.2013
Neue Rätsel um die Funktion des Enzyms Black im Sehprozess

In der Taufliege Drosophila sind die Funktionen der drei Enzyme Tan, Ebony und Black eng verwoben – unter anderem sind sie am Botenstoff-Recycling für den Sehprozess beteiligt.


Zusammenspiel von Tan, Ebony und Black: Die Enzyme Tan (blau), Ebony (magenta) und Black (grün) im Gehirnschnitt von Drosophila. Die Photorezeptorzellen der Retina stellen das Enzym Tan her (blau, links oben). Von der Retina gelangt die Sehinformation in die sogenannten optischen Loben des Gehirns, die unter anderem aus Lamina und Medulla bestehen. Spezielle Gliazellen der Lamina (helle Struktur in der Mitte) und Medulla (Struktur rechts) produzieren die beiden Enzyme Ebony und Black. Die Forscher färbten die Enzyme mit Antikörpern an.

Abbildung: Anna Ziegler, RUB, Dissertation 2010


Drei Enzyme im Insektengehirn: Ein Querschnitt durch die Lamina, der ersten Verschaltungsstelle der Sehzellen von Drosophila, zeigt den Hauptfortsatz der Photorezeptoren umgeben von Gliazellen. Das Enzym Tan (blau) findet sich in den Photorezeptor-Fortsätzen, Ebony (magenta) und Black (grün) in den Gliazellen. Die Forscher färbten die Enzyme mit Antikörpern an.

Abbildung: Anna Ziegler, RUB, Dissertation 2010

RUB-Forscher aus der AG Molekulare Zellbiochemie zeigten erstmals, dass Fliegen ohne dieses Recycling nicht sehen können. Ihre Analyse des Enzyms Black gibt aber auch neue Rätsel um dessen Funktion auf. Anna Ziegler, Florian Brüsselbach und Prof. Dr. Bernhard Hovemann berichten in der Zeitschrift „Journal of Comparative Neurology“, das dem Thema die Titelgeschichte widmete.

Tan, Ebony und Black sind wichtig für den Sehprozess und die Bildung der Kutikula

Die Gene tan, ebony und black der Taufliege enthalten die Baupläne für drei gleichnamige Enzyme, die zusammenwirken, um die Außenhülle des Körpers, die Kutikula, zu bilden. Die gleichen Enzyme kommen aber auch im Facettenauge der Fliegen vor. Forscher gehen daher davon aus, dass Tan, Ebony und Black beim Sehen – ähnlich wie bei der Kutikulabildung – zusammenarbeiten. Tatsächlich bewirken Mutationen der ebony- und tan-Gene, dass die Fliegen nicht mehr richtig sehen. Eine Mutation des black-Gens hingegen hat keinen solchen Effekt. Das Team um Prof. Hovemann untersuchte, wo im Facettenauge das Enzym Black vorkommt und welche Rolle es beim Sehen spielt.

Black und Ebony treten immer zusammen auf

Zunächst testeten die Wissenschaftler, wo in den Facettenaugen der Taufliege und in ihren Extraaugen am Kopf, den Ocelli, die Gene ebony und black aktiv sind. Sie nahmen verschiedene Typen der lichtsensitiven Zellen, Photorezeptoren genannt, unter die Lupe. Das Ergebnis: Beide Gene werden stets gemeinsam abgelesen – genau wie in der Kutikula. Das legt nahe, dass die Funktionen der Enzyme Ebony und Black eng aneinander gekoppelt sind.

Sehen erfordert einen kontinuierlichen Fluss des Botenstoffs Histamin

Fällt Licht auf das Facettenauge, schütten die Photorezeptoren den Botenstoff Histamin aus. In früheren Studien zeigten die Bochumer Biochemiker bereits, dass Histamin recycelt wird – und zwar in den Gliazellen, die die Photorezeptoren umgeben. Dort inaktiviert das Enzym Ebony den Botenstoff Histamin, indem es ihn an die Aminosäure β-Alanin bindet. Dabei entsteht β-Alanyl-Histamin, das aus den Gliazellen zurück in die Photorezeptoren transportiert wird. Hier spaltet das Enzym Tan β-Alanin wieder ab; Histamin entsteht. Bislang ging man davon aus, dass das Enzym Black dafür verantwortlich ist, das β-Alanin zu produzieren, das für die Inaktivierung von Histamin nötig ist. Besitzt ein Fliegenauge jedoch kein funktionstüchtiges Black, läuft der Sehprozess trotzdem normal ab. Hovemanns Team ging deshalb der Frage nach, ob es einen anderen Nachschubweg für β-Alanin gibt. Sie testeten auch, ob das Fliegenauge das Histamin-Recycling umgehen kann, indem die Photorezeptoren den ausgeschütteten Botenstoff direkt wieder aufnehmen, ohne dass er in den Gliazellen inaktiviert wird.

Kein funktionstüchtiger Sehsinn ohne Histamin-Recycling

Die Forscher untersuchten Fliegen, die weder Histamin selbst herstellen, noch es recyceln konnten. Denn ihnen fehlte das Enzym für die Histamin-Synthese und das Enzym Ebony. Die Sehleistung der Fliegen maß das Team mit dem sogenannten Elektroretinogramm, das nicht nur die Erregung der Photorezeptorzellen anzeigt, sondern auch die Weiterleitung des Signals ins Gehirn. Auch wenn die Wissenschaftler Histamin von außen zugaben, waren die Fliegen blind. Mit diesem Test zeigten sie erstmals, dass Drosophila beim Sehen auf das Histamin-Recycling in den Gliazellen angewiesen ist. Ohne das Recycling-Enzym Ebony können die Zellen im Insektenauge nichts mit dem Botenstoff anfangen.

Fliegen sehen auch bei gestörter β-Alanin-Produktion

Zellen können β-Alanin nicht nur mit Hilfe des Enzyms Black herstellen, sondern auch, indem sie über andere Enzyme das Molekül Uracil in β-Alanin umbauen. Hovemanns Team inaktivierte beide Produktionswege für β-Alanin und testete erneut die Sehfähigkeit der Taufliegen. Laut Elektroretinogramm war der Sehsinn der Tiere mit der Doppelmutation nicht beeinträchtigt. „Die Ergebnisse scheinen einen Widerspruch darzustellen“, sagt Bernhard Hovemann. „Obwohl die Insektenaugen der Doppelmutante kein β-Alanin herstellen können, scheinen die Tiere ganz normal zu sehen. Gleichzeitig zeigen unsere Daten eindeutig, dass das Recycling durch Anheften von β-Alanin notwendig ist, damit die Tiere sehen können.“ Die Forscher vermuten, dass β-Alanin ebenfalls in einem Kreislauf zwischen Gliazellen und Photorezeptoren recycelt wird. Das Enzym Black sorge lediglich dafür, β-Alanin-Verluste auszugleichen. „Das würde erklären, warum sich bei Fliegen, die kein neues β-Alanin herstellen können, nicht unmittelbar Sehstörungen finden lassen“, so Hovemann. Dieses Rätsel werden aber erst weitere Studien lösen können.

Titelaufnahme

A.B. Ziegler, F. Brüsselbach, B.T. Hovemann (2013): Activity and coexpression of Drosophila black with ebony in fly optic lobes reveals putative cooperative tasks in vision that evade electroretinographic detection, Journal of Comparative Neurology, DOI: 10.1002/cne.23247

Weitere Informationen

Prof. Dr. Bernhard Hovemann, AG Molekulare Zellbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24235, E-Mail: Bernhard.Hovemann@rub.de

Angeklickt

Frühere Presseinformation: Histamin-Transporter in Gliazellen
http://www.pm.ruhr-uni-bochum.de/pm2008/msg00369.htm

Frühere Presseinformation: Histamin-Recycling
http://www.pm.ruhr-uni-bochum.de/pm2006/msg00423.htm

Frühere Presseinformation: Rolle von Tan
http://www.pm.ruhr-uni-bochum.de/pm2005/msg00375.htm

Cover-Illustration des Journal of Comparative Neurology
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00078.html.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie