Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick zurück in die Zukunft: Widerstehen Korallen sinkenden pH-Werten?

04.08.2016

Tropische Steinkorallen der Gattung Porites können ihren internen pH-Wert so einstellen, dass sie über einen langen Zeitraum hinweg auch unter erhöhten Kohlendioxid-Konzentrationen Kalk bilden und wachsen können. Um die Fähigkeit der pH-Regulation genauer zu verstehen, haben Forschende des GEOMAR Proben dieser Korallen von natürlichen Kohlendioxidquellen in Papua Neu Guinea existieren, mittels der Bor-Isotopie ausgewertet. Analysen dieser angepassten Individuen stellen eine wichtige Ergänzung zu kürzeren Labor- und Freilandexperimenten dar, erklärt das Team in den „Scientific Reports“. Nur so wurde deutlich, dass die Anpassungsfähigkeit der robusten Korallenart begrenzt ist

Weil die Meere menschengemachtes Kohlendioxid (CO2) aus der Atmosphäre aufnehmen, sinkt ihr pH-Wert. Wie diese Veränderung in der Ozeanchemie tropische Korallenriffe beeinflusst, lässt sich anhand von Labor- oder kurzzeitigen Freilandexperimenten untersuchen.


Korallenriff mit "normalen" pH-Bedingungen im Arbeitsgebiet in Papua-Neuguinea. Foto aus Fabricius, K. E. et al.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1, 165–169 (2011).


Karte des Arbeitsgebiets mit Orten der Probennahme und Anganben zum pH-Gradienten. Grafik aus Fabricius, K. E. et al.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1, 165–169 (2011).

Ein Team um Dr. Marlene Wall, Meeresbiologin am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel wählte jedoch einen anderen Ansatz: Im Rahmen des deutschen Forschungsverbunds zur Ozeanversauerung BIOACID (Biological Impacts of Ocean Acidification) untersuchten sie Korallen der Gattung Porites, die an vulkanischen Kohlendioxid-Quellen in Papua-Neuguinea leben und dort zu den dominanten Arten zählen.

„Prognosen für das Überleben von tropischen Korallen, welche durch hohe Temperaturen, zunehmende Versauerung aber auch Verschmutzung des Meerwassers gefährdet sind, gestalten sich schwierig“, erläutert Dr. Wall. „Die natürlichen Kohlendioxid-Quellen bieten uns die Möglichkeit, das Szenario der Zukunft bereits heute zu studieren. Frühere Untersuchungen haben gezeigt, dass Porites zu den Gewinnern zählen wird. Wie ihnen dies gelingt, war bis jetzt unbekannt.“

Die tropischen Steinkorallen halten ihren internen pH-Wert auf einem Niveau, bei dem sie auch unter höheren Kohlendioxid-Konzentrationen und niedrigeren pH-Werten Kalk produzieren und wachsen können – ein entscheidender Vorteil gegenüber vielen anderen Arten. So haben sie sich über Jahrzehnte unter Extrembedingungen behauptet. „Nach unseren Beobachtungen ist die pH-Regulation eine echte Schlüsselfunktion, wenn es um das Überleben unter niedrigeren pH-Werten geht“, betont Dr. Wall. Die Erkenntnisse zur pH-Regulation der Korallen wurden jetzt im Fachmagazin Scientific Reports veröffentlicht.

Um die Fähigkeit zur pH-Regulierung besser zu verstehen, untersuchte das Wissenschafts-Team um Dr. Wall Korallen mit Hilfe der Bor-Isotopie. Bei dieser Messung werden die Skelette mit Hilfe eines Lasers beschossen und das dabei freigesetzte Material in einem Massenspektrometer analysiert. Die Isotopenzusammensetzung des im Skelett vorhandenen Elements Bor gibt dann Aufschluss über den von der Koralle intern erzeugten pH-Wert. „Dieses Verfahren eröffnet uns völlig neue Einblicke und Rückschlüsse auf die Physiologie der Korallen zum Zeitpunkt der Skelettbildung“, erläutert Dr. Jan Fietzke, Physiker am GEOMAR und Co-Autor der Studie.

„Man könnte behaupten, wir blicken zurück in die Zukunft.“ Für die in der aktuellen Publikation beschriebene Studie untersuchte Fietzke das Skelett, das wenige Tage bis Wochen vor der Probennahme gebildet worden war. Vergleiche mit gleichzeitigen Messungen im Umgebungswasser bewiesen, dass die Bor-Isotopie den internen pH-Wert der Korallen wiedergab und sich dieser vom Wert des Umgebungswassers unterscheidet – folglich hat eine Regulierung stattgefunden. Auf Basis dieser Erkenntnis werden jetzt auch Bohrkerne aus Korallen ausgewertet, die mehrere Jahrzehnte alt sind. „So können wir herausfinden wann und wie schnell sie sich angepasst haben.“

Der Blick zurück in die Zukunft zeigte, dass Korallen eine bemerkenswerte Fähigkeit haben, ihre pH-Regulierung über Jahrzehnte konstant zu halten und dadurch dem globalem Wandel entgegen zu wirken. „Wir haben jedoch festgestellt, dass die Regulation nur bis zu einem gewissen Maß möglich ist. Bei Kohlendioxid-Konzentrationen, die über die für das Jahr 2100 prognostizierten Werte hinausgehen, sind Kalkbildung und Wachstum geringer – dann kommt auch der Gewinner an seine physiologischen Grenzen“, so Dr. Wall. „Unsere Ergebnisse belegen eindrücklich, wie wichtig es ist, Laborexperimente mit Langzeit-Feldstudien und Beobachtungen zu ergänzen“, so Dr. Wall. Kontrollierte Laborexperimente lieferten das Verständnis für die aktive pH-Regulierung, aber erst gemeinsam mit Feldbeobachtungen erlauben sie ein differenzierteres Bild über mögliche Langzeitfolgen.“

Original-Publikation:
Wall, M., Fietzke, J., Schmidt, G.M., Fink, A., Hofmann, L.C., de Beer, D., Fabricius, K.E., 2016: Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions. Scientific Reports 6:30688, doi: 10.1038/srep30688

BIOACID in Kürze:
Unter dem Dach von BIOACID (Biological Impacts of Ocean Acidification) untersuchen zehn Institute, wie marine Lebensgemeinschaften auf Ozeanversauerung reagieren und welche Konsequenzen dies für das Nahrungsnetz, die Stoff- und Energieumsätze im Meer sowie schließlich auch für Wirtschaft und Gesellschaft hat. Das Projekt begann 2009 und ging im Oktober 2015 in die dritte, finale Förderphase. BIOACID wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Koordination liegt beim GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. Eine Liste der Mitglieds-Institutionen, Informationen zum wissenschaftlichen Programm und den BIOACID-Gremien sowie Fakten zur Ozeanversauerung sind auf der Website www.bioacid.de zu finden.

Bildmaterial:
Unter www.geomar.de/n4655 steht Bildmaterial zum Download bereit.

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.bioacid.de BIOACID – Biological Impacts of Ocean Acidification
http://www.fwf.ac.at Fonds zur Förderung der wissenschaftlichen Forschung (FWF)

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen