Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blick auf den Schaltplan des Gehirns

08.10.2012
Mit einem neuen Verfahren lassen sich Verbindungen zwischen Nervenzellen kartografieren.
Unser Gehirn vollbringt seine bemerkenswerten Leistungen durch das Zusammenspiel
einer unvorstellbaren Vielzahl von Nervenzellen, die in komplexen Netzwerken miteinander verschaltet sind. Ein Team von Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), der Universität Göttingen und des Bernstein Center for Computational Neuroscience Göttingen hat nun eine Methode entwickelt, mit der sich neuronale Schaltpläne entschlüsseln lassen.
Aus Messungen der gesamten neuronalen Aktivität können sie bestimmen, mit welcher Wahrscheinlichkeit jeweils zwei Nervenzellen miteinander verbunden sind. Die Studie, die helfen soll, die Funktionsweise des Gehirns besser zu verstehen, ist in der Fachzeitschrift PLoS Computational Biology erschienen.

Aus rund 80 Milliarden Nervenzellen besteht das menschliche Gehirn und keine von ihnen lebt für sich allein. Die Nervenzellen (auch Neuronen genannt) bilden ein eng verknüpftes Netzwerk, durch welches sie untereinander Signale austauschen. Die Verbindungen sind dabei alles andere als zufällig arrangiert und ein Verständnis davon, welche Neuronen miteinander Verbindungen eingehen und welche nicht, verspricht wertvolle Informationen über die Funktionsweise des Hirns. Das Verbindungsnetzwerk direkt aus der Gewebestruktur zu ermitteln, ist eine bis auf weiteres praktisch unmögliche Aufgabe - selbst in Zellkulturen mit nur einigen tausend Neuronen. Hingegen gibt es heutzutage weit entwickelte Methoden, um dynamische Aktivitätsmuster von Neuronen aufzuzeichnen.
Ein solches Muster gibt an, welches Neuron zu welchem Zeitpunkt ein Signal weitergeleitet hat. Es ist somit eine Art neuronales Gesprächsprotokoll. Das Göttinger Team rund um Theo Geisel, Direktor am MPIDS, hat sich nun eines dieser Aktivitätsmuster zunutze gemacht.

Die Wissenschaftler verwenden Daten aus sogenannten Kalzium-Fluoreszenz-Messungen, die in Zusammenarbeit mit der Universität Barcelona aufgenommen wurden. Diese Bildgebungsmethode erlaubt es, die Aktivität von Tausenden von Neuronen in einer Zellkultur (oder im lebenden Hirn) gleichzeitig aufzuzeichnen. Denn für das Weiterleiten eines elektrischen Signals sind am Neuron Ionen wie etwa Kalzium-Ionen verantwortlich. Mit Licht einer bestimmten Wellenlänge bestrahlt, beginnen diese zu leuchten und verraten so, welche Neuronen gerade aktiv sind. Jedoch sind die zeitlichen Abläufe in Neuronen zu schnell, um direkt mitverfolgen zu können, wie ein Impuls „abgefeuert“ wird. Es lässt sich also nicht unmittelbar nachzuvollziehen, wie eine einzelne Zelle eine andere beeinflusst oder ob eine Verbindung direkt ist oder über mehrere Stationen verläuft. Mit dem im Team von Theo Geisel nun entwickelten Algorithmus lassen sich aber aus den gemessenen Daten dennoch bemerkenswert genaue Informationen über die Linienführung im Verbund der Nervenzellen gewinnen.

„Unsere Methode basiert auf der so genannten Transferentropie“, erklärt Olav Stetter vom MPIDS, Erstautor der nun erschienenen Publikation. Die Transferentropie ist eine Größe aus der Informationstheorie, mit der gerichtete Informationsflüsse quantitativ bestimmt werden können. Mit anderen Worten: Es kann berechnet werden, wie wahrscheinlich es ist, dass das Signal von einem bestimmten Neuron eine Aktivität in einem anderen zur Folge hatte. „Wir haben mithilfe der Transferentropie ein robustes Verfahren entwickelt, das zuverlässig zwischen wahren kausalen Zusammenhängen unterscheiden kann und solchen, die nur scheinbar bestehen und durch indirekte Verbindungen oder durch Messfehler entstanden sind“, sagt Stetter.

Aus der Aktivität der Neuronen, die sich in Fluoreszenz-Messungen zeigt (im Bild links), können die Wissenschaftler darauf schließen, wie die Nervenzellen miteinander verschaltet sind (im Bild rechts angedeutet).

Grafik: MPIDS

Die Wissenschaftler haben ihre neue Methode zunächst auf künstliche Daten angewandt. Sie sind dabei von einem gegebenen Netzwerk ausgegangen und haben die Signale, welche in einem Kalzium-Fluoreszenz-Experiment zu erwarten wären, in realistischer Qualität berechnet. Wie die Wissenschaftler zeigen, sind die kausalen Zusammenhänge im Netzwerk zeitlich variabel und abhängig vom Zustand der Aktivität des Netzwerkes. Nur in ruhigeren Phasen mit relativ geringer Aktivität stimmten die kausalen Zusammenhänge mit dem tatsächlichen Aufbau des Netzwerks überein. Diese Tatsache konnten sich die Göttinger Forscher für ihre Vorhersagen nutzbar machen. In Phasen hoher Aktivität hingegen sind so viele Nervenzellen gleichzeitig am neuronalen Gesprächsfluss beteiligt, dass sich der Weg einer Information nicht mehr gut nachvollziehen lässt.

In der nun publizierten Arbeit wurden auch echte Neuronen untersucht. Die Analyse mit der neuen Methode lieferte somit bereits konkrete Resultate und deckte eine ungewöhnliche Konzentration von Verbindungen rund um einzelne Zellen auf.

Die Forscher sind zuversichtlich, dass sich ihr Verfahren auf eine breite Klasse von Systemen anwenden lässt: „Unsere Methode ermöglicht eine Rekonstruktion von neuronalen Netzwerken ohne spezifische Annahmen über deren Beschaffenheit. Vielmehr lassen wir uns von den Daten leiten“, erklärt MPIDS-Mitarbeiter Demian Battaglia. Dies lässt hoffen, dass der Algorithmus der Göttinger Wissenschaftler es erlaubt, in breitem Umfang neuronale Schaltpläne zu berechnen, in gezüchteten Netzwerken ebenso wie in natürlichen. Die gesammelten Informationen aus einer Vielzahl von verschiedenen neuronalen Netzwerken können dann helfen zu verstehen, wann und wo die Neuronen Verbindungen eingehen und nach welchen Kriterien sie ihre Partner auswählen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften