Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick ins "Getriebe" der "Zellkraftwerke" erstmals möglich: Forscher entwickeln optische Messmethode

20.12.2016

Volkskrankheit Alzheimer: Bislang sind die Ursachen der neurodegenerativen Erkrankung, an der mehr als eine Million Deutsche leiden, nicht vollständig geklärt. Vermutlich spielen gestörte Stoffwechselprozesse in den Mitochondrien, den sogenannten „Kraftwerken der Zelle“, eine zentrale Rolle. Wissenschaftler der Uni und Uniklinik Ulm haben nun eine Untersuchungsmethode entwickelt, mit der die komplexen Vorgänge im Zellinneren optisch dargestellt werden können. Mit dem Messverfahren erreichten die Forscher Mitte Dezember das Finale um den renommierten Otto von Guericke-Preis.

Unsere Gesellschaft wird immer älter, und mit dem Alter steigt das Risiko für bestimmte Krankheiten wie die Alzheimer-Demenz. Laut der Deutschen Alzheimer Gesellschaft werden pro Jahr etwa 40 000 Menschen neu an der Demenzform erkranken, sofern es keinen Durchbruch in Prävention und Therapie gebe.


Für die neue Messmethode (links im Kasten) kombinierten die Forscher zwei Verfahren zur Fluoreszenz- (FLIM) und Phosphoreszenzmessung (PLIM)

Foto: Core Facility Konfokale und Multiphotonen Mikroskopie, Uni Ulm


Mikroskopische Visualisierung von Energiestoffwechseländerungen in Nervenzellen (Bild 1-3) und Hirngewebe (4,5). (Ausführliche Beschreibung: siehe Pressemitteilung)

Abb.: Patrick Schäfer, AG Rück/AG von Arnim

Die Ulmer Wissenschaftler Dr. Angelika Rück, Professorin Christine von Arnim und Dr. Björn von Einem haben nun zwei mikroskopische Methoden zur Fluoreszenz- (FLIM) und Phosphoreszenzmessung (PLIM) kombiniert, die sowohl die Diagnostik als auch die Entwicklung und Erprobung neuer Medikamente für Alzheimer und andere Volkskrankheiten wie Diabetes und Adipositas oder Tumor- sowie Autoimmunerkrankungen vorantreiben könnten.

„Bislang konnten wir den Stoffwechsel einer Zelle über den Sauerstoffverbrauch in Zellpopulationen messen, aber nicht die eigentliche Stoffwechselaktivität in den Zellen sichtbar machen“, erklärt Professorin Christine von Arnim, Oberärztin an der Klinik für Neurologie der Uniklinik Ulm und Leiterin der Arbeitsgruppe Alzheimer Lab.

„Mit dem von uns entwickelten optischen Verfahren sind wir jetzt erstmals in der Lage, wesentliche Stoffwechselprozesse in den Mitochondrien lebender Zellen darzustellen und zu verstehen. Wir können damit also auch metabolische Veränderungen bei neurodegenerativen Krankheiten wie Alzheimer nachvollziehen“, erläutert Dr. Angelika Rück, Leiterin der Core Facility „Konfokale und Multiphotonen Mikroskopie“ an der Uni Ulm. Das neue Verfahren werde daher in Zukunft von großer Bedeutung für die Entwicklung von Medikamenten sein, sind die Wissenschaftler überzeugt.

Was genau mithilfe der FLIM/PLIM-Kombination dargestellt werden kann, beschreibt Dr. Björn von Einem, Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Alzheimer Lab: „Sehr vereinfacht gesagt messen wir die Dauer der Lichtemissionen der wichtigsten Moleküle des mitochondrialen Stoffwechsels. Diese werden mit einem Laser angeregt. Dann messen wir die Dauer der Fluoreszenz und die Abklingzeit in Nanosekunden.

Parallel ermitteln wir die Sauerstoffkonzentration mithilfe eines Phosphoreszenzmarkers“, so der Biologe. In Experimenten simulierten die Wissenschaftler Störungen im Zellstoffwechsel, indem sie die mitochondriale Atmung unter anderem durch Zugabe des Antibiotikums Antimycin A hemmten.

Mithilfe der neuen Laser-Apparatur konnten die Forscher zum einen die so entstehenden metabolischen Veränderungen in der Zelle und in den Mitochondrien darstellen. Zum anderen gelang es ihnen, diese gleichzeitig mit der Funktion des Sauerstoffs in der mitochondrialen Membran in Verbindung zu bringen.

Für die neuartige Untersuchungsmethode stellten die Firmen Toptica Photonics AG und Spectra-Physics GmbH die Laser-Apparatur bereit, vom Industriepartner Becker & Hickl GmbH kamen die Detektoren. Das langfristige Ziel der Forscher ist, das Verfahren in vivo anzuwenden, beispielsweise um in lebenden Zellen zu beobachten, welche Substanzen die Stoffwechselprozesse auf welche Weise beeinflussen.

Über das Projekt
Das Projekt „Mitochondriales Monitoring von Stoffwechseländerungen bei neurologischen Erkrankungen mittels optischer Systeme (Mitoskopie)“ der Ulmer Wissenschaftler wurde im Rahmen eines Projektes der Industriellen Gemeinschaftsforschung (IGF) durchgeführt und von der Forschungsvereinigung Feinmechanik, Optik und Medizintechnik e. V. (F.O.M) koordiniert. Die IGF soll die strukturbedingten Nachteile kleiner und mittlerer Unternehmen auf dem Gebiet von Forschung und Entwicklung ausgleichen. Es wird vom Bundesministerium für Wirtschaft und Energie (BMWi) mit öffentlichen Mitteln gefördert. Organisiert wird die IGF wird von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF). Dieses Netzwerk vergibt jährlich den Otto von Guericke-Preis (à 10 000 Euro), für den das Ulmer Projekt dieses Mal nominiert war.


Video zum Projekt (Quelle: AiF):

https://www.youtube.com/watch?v=3bybsO4ugfo

Weitere Informationen:
Dr. Angelika Rück, angelika.rueck@uni-ulm.de, Tel.: 0731/ 50-33700

Prof. Dr. Christine von Arnim, christine.arnim@uni-ulm.de, Tel.: 0731/500-63011

Dr. Björn von Einem, bjoern.von-einem@uni-ulm.de, Tel.: 0731/500-63117

Marieke Behnel | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik