Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick ins "Getriebe" der "Zellkraftwerke" erstmals möglich: Forscher entwickeln optische Messmethode

20.12.2016

Volkskrankheit Alzheimer: Bislang sind die Ursachen der neurodegenerativen Erkrankung, an der mehr als eine Million Deutsche leiden, nicht vollständig geklärt. Vermutlich spielen gestörte Stoffwechselprozesse in den Mitochondrien, den sogenannten „Kraftwerken der Zelle“, eine zentrale Rolle. Wissenschaftler der Uni und Uniklinik Ulm haben nun eine Untersuchungsmethode entwickelt, mit der die komplexen Vorgänge im Zellinneren optisch dargestellt werden können. Mit dem Messverfahren erreichten die Forscher Mitte Dezember das Finale um den renommierten Otto von Guericke-Preis.

Unsere Gesellschaft wird immer älter, und mit dem Alter steigt das Risiko für bestimmte Krankheiten wie die Alzheimer-Demenz. Laut der Deutschen Alzheimer Gesellschaft werden pro Jahr etwa 40 000 Menschen neu an der Demenzform erkranken, sofern es keinen Durchbruch in Prävention und Therapie gebe.


Für die neue Messmethode (links im Kasten) kombinierten die Forscher zwei Verfahren zur Fluoreszenz- (FLIM) und Phosphoreszenzmessung (PLIM)

Foto: Core Facility Konfokale und Multiphotonen Mikroskopie, Uni Ulm


Mikroskopische Visualisierung von Energiestoffwechseländerungen in Nervenzellen (Bild 1-3) und Hirngewebe (4,5). (Ausführliche Beschreibung: siehe Pressemitteilung)

Abb.: Patrick Schäfer, AG Rück/AG von Arnim

Die Ulmer Wissenschaftler Dr. Angelika Rück, Professorin Christine von Arnim und Dr. Björn von Einem haben nun zwei mikroskopische Methoden zur Fluoreszenz- (FLIM) und Phosphoreszenzmessung (PLIM) kombiniert, die sowohl die Diagnostik als auch die Entwicklung und Erprobung neuer Medikamente für Alzheimer und andere Volkskrankheiten wie Diabetes und Adipositas oder Tumor- sowie Autoimmunerkrankungen vorantreiben könnten.

„Bislang konnten wir den Stoffwechsel einer Zelle über den Sauerstoffverbrauch in Zellpopulationen messen, aber nicht die eigentliche Stoffwechselaktivität in den Zellen sichtbar machen“, erklärt Professorin Christine von Arnim, Oberärztin an der Klinik für Neurologie der Uniklinik Ulm und Leiterin der Arbeitsgruppe Alzheimer Lab.

„Mit dem von uns entwickelten optischen Verfahren sind wir jetzt erstmals in der Lage, wesentliche Stoffwechselprozesse in den Mitochondrien lebender Zellen darzustellen und zu verstehen. Wir können damit also auch metabolische Veränderungen bei neurodegenerativen Krankheiten wie Alzheimer nachvollziehen“, erläutert Dr. Angelika Rück, Leiterin der Core Facility „Konfokale und Multiphotonen Mikroskopie“ an der Uni Ulm. Das neue Verfahren werde daher in Zukunft von großer Bedeutung für die Entwicklung von Medikamenten sein, sind die Wissenschaftler überzeugt.

Was genau mithilfe der FLIM/PLIM-Kombination dargestellt werden kann, beschreibt Dr. Björn von Einem, Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Alzheimer Lab: „Sehr vereinfacht gesagt messen wir die Dauer der Lichtemissionen der wichtigsten Moleküle des mitochondrialen Stoffwechsels. Diese werden mit einem Laser angeregt. Dann messen wir die Dauer der Fluoreszenz und die Abklingzeit in Nanosekunden.

Parallel ermitteln wir die Sauerstoffkonzentration mithilfe eines Phosphoreszenzmarkers“, so der Biologe. In Experimenten simulierten die Wissenschaftler Störungen im Zellstoffwechsel, indem sie die mitochondriale Atmung unter anderem durch Zugabe des Antibiotikums Antimycin A hemmten.

Mithilfe der neuen Laser-Apparatur konnten die Forscher zum einen die so entstehenden metabolischen Veränderungen in der Zelle und in den Mitochondrien darstellen. Zum anderen gelang es ihnen, diese gleichzeitig mit der Funktion des Sauerstoffs in der mitochondrialen Membran in Verbindung zu bringen.

Für die neuartige Untersuchungsmethode stellten die Firmen Toptica Photonics AG und Spectra-Physics GmbH die Laser-Apparatur bereit, vom Industriepartner Becker & Hickl GmbH kamen die Detektoren. Das langfristige Ziel der Forscher ist, das Verfahren in vivo anzuwenden, beispielsweise um in lebenden Zellen zu beobachten, welche Substanzen die Stoffwechselprozesse auf welche Weise beeinflussen.

Über das Projekt
Das Projekt „Mitochondriales Monitoring von Stoffwechseländerungen bei neurologischen Erkrankungen mittels optischer Systeme (Mitoskopie)“ der Ulmer Wissenschaftler wurde im Rahmen eines Projektes der Industriellen Gemeinschaftsforschung (IGF) durchgeführt und von der Forschungsvereinigung Feinmechanik, Optik und Medizintechnik e. V. (F.O.M) koordiniert. Die IGF soll die strukturbedingten Nachteile kleiner und mittlerer Unternehmen auf dem Gebiet von Forschung und Entwicklung ausgleichen. Es wird vom Bundesministerium für Wirtschaft und Energie (BMWi) mit öffentlichen Mitteln gefördert. Organisiert wird die IGF wird von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF). Dieses Netzwerk vergibt jährlich den Otto von Guericke-Preis (à 10 000 Euro), für den das Ulmer Projekt dieses Mal nominiert war.


Video zum Projekt (Quelle: AiF):

https://www.youtube.com/watch?v=3bybsO4ugfo

Weitere Informationen:
Dr. Angelika Rück, angelika.rueck@uni-ulm.de, Tel.: 0731/ 50-33700

Prof. Dr. Christine von Arnim, christine.arnim@uni-ulm.de, Tel.: 0731/500-63011

Dr. Björn von Einem, bjoern.von-einem@uni-ulm.de, Tel.: 0731/500-63117

Marieke Behnel | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics