Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick unter die Haube komplexer Moleküle

05.10.2011
Einzelne Atome als Kontrastmittel für Rastertunnelmikroskope

Rastertunnelmikroskope zählen zu den wichtigsten und am weitesten verbreiteten Werkzeugen, um Strukturen auf atomarer Ebene sichtbar zu machen. Bisher war es damit allerdings kaum möglich, bis ins Innere komplexer Moleküle vorzudringen.

Jülicher Forscher haben jetzt eine weitere Hürde überwunden, um diese Beschränkung aufzuheben. Sie nutzen einzelne Atome zwischen Mikroskopspitze und Probe als eine Art Kontrastmittel, mit dem sich die innere Molekülstruktur und zwischenmolekulare Kräfte abbilden lassen. Die Methode wurde am 3. Oktober 2011, im Journal of the American Chemical Society vorgestellt (DOI: 10.1021/ja204626g).

Biomoleküle, Proteine oder organische Halbleiter für zukünftige elektronische Bauteile - viele Stoffe im Fokus der Nanowissenschaften lassen sich bis jetzt kaum mit herkömmlichen Rastertunnelmikroskopen untersuchen. Diese Mikroskoptypen tasten mit einer feinen, oft auf ein einziges Atom zulaufenden Metallspitze die Oberfläche einer Probe ab und ermitteln dabei die Stärke eines elektrischen Stroms. Dieser sogenannte Tunnelstrom vermisst allerdings nur die äußere Elektronenhülle. Da sich diese Hülle bei vielen komplexen Molekülen über die Länge des gesamten Moleküls erstreckt, lässt die herkömmliche Anwendung kaum Hinweise auf die tieferliegende, atomare Molekülstruktur zu.

Die Jülicher Arbeitsgruppe um Dr. Ruslan Temirov und Prof. Stefan Tautz vom Peter Grünberg Institut forscht seit mehreren Jahren an Methoden, um die Möglichkeiten der Rastertunnelmikroskopie zu erweitern. In ihrem Artikel beschreiben sie die Möglichkeit, verschiedene Atom- oder Molekülsorten als Signalwandler mit unterschiedlichen Eigenschaften einzusetzen. Die Atome haften dabei an der Spitze des Mikroskops. Durch kleine Lageverschiebungen reagieren sie extrem empfindlich auf die Kontur von Molekülen und beeinflussen dadurch den messbaren Tunnelstrom. Auf diese Weise gelingt es schon mit gewöhnlichen, industriell hergestellten Rastertunnelmikroskopen, Bilder von der Anordnung der Atome im Innern komplexer Moleküle anzufertigen und sogar zwischenmolekulare Kräfte wie Wasserstoffbrückenbindungen sichtbar zu machen.

"Das Erstaunlichste an dieser Methode ist, dass sie so verblüffend einfach ist. Durch den Einsatz verschiedener Atomsorten könnten sich schnell maßgeschneiderte Kontrastmittel für verschiedene Anwendungen bereit stellen lassen", berichtet Ruslan Temirov. Bei den Jülicher Experimenten kamen Xenon, Kohlenmonoxid und Methan zum Einsatz, die sich unterschiedlich empfindlich verhalten und dadurch für verschiedene Reichweiten qualifizieren. "Die Arbeit stellt einen ersten Schritt in Richtung einer Standardanwendung dar. Es ist gut vorstellbar, dass sich in Zukunft noch ganz andere Stoffe als Sensor etablieren werden", so Temirov.

Auf dem Weg zum jetzt vorgestellten Verfahren konnten die Forscher bereits 2008 erste Bilder aus dem Innern komplexer organischer Moleküle veröffentlichen. Die Methode, einzelne Atome oder Moleküle als eine Art Signalwandler oder Sensor zwischen den Mikroskoptastkopf und die Probe zu bringen, ist mittlerweile zum Patent angemeldet. Als Sensor kamen ursprünglich Moleküle aus schwerem Wasserstoff zum Einsatz. Diese ließen sich allerdings nicht präzise dosieren. Wasserstoff ist sehr leicht beweglich, verhält sich daher ziemlich unruhig und ist im Rastertunnelmikroskop zudem praktisch unsichtbar. "Bei dem alten Verfahren ließ sich nicht feststellen, wie viele Moleküle sich zwischen Tastkopf und Probe befinden. Man muss sich den Wasserstoff wie eine Flüssigkeit vorstellen, die die ganze Probe überzieht.", berichtet der Jülicher Forscher Dr. Christian Wagner. Nachdem vor etwa einem Jahr die grundlegenden physikalischen Prinzipien geklärt wurden, auf denen die neue Technologie beruht, ist den Forschern jetzt der entscheidende Schritt hin zu einem breiten Anwendungsspektrum gelungen.

Originalveröffentlichung:
Single Molecule and Single Atom Sensors for Atomic Resolution Imaging of Chemically Complex Surfaces Georgy Kichin, Christian Weiss, Christian Wagner, F. Stefan Tautz, Ruslan Temirov J. Am. Chem. Soc.
DOI: 10.1021/ja204626g
Publication Date (Web): October 3, 2011
Direkter Link zur Online-Veröffentlichung: http://pubs.acs.org/doi/abs/10.1021/ja204624g
Weitere Informationen:
Rastertunnelmikroskopie mit Wasserstoff:
http://www.fz-juelich.de/portal/DE/Forschung/Informationstechnologie/STHM/artikel.html
So funktioniert ein Rastertunnelmikroskop:
http://www.fz-juelich.de/zch/DE/Leistungen/AnalytischeVerfahren/Lokalisierung/STM.html
Forschung am Peter Grünberg Institut:
http://www.fz-juelich.de/portal/DE/UeberUns/InstituteEinrichtungen/Institute/PeterGruenbergInstitut/_node.html
Pressemitteilung vom 20.10.2010, "Jülicher Forscher schauen ins Innere von Molekülen":

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2010/PM788.html

Ansprechpartner:
Prof. Stefan Tautz
s.tautz@fz-juelich.de
Tel.: 02461 61 4561
Dr. Ruslan Temirov
r.temirov@fz-juelich.de
Tel.: 02461 61 3462
Dr. Christian Wagner
c.wagner@fz-juelich.de
Tel.: 02461 61 3538
Pressekontakt:
Tobias Schlößer
Tel.: 02461 61 4771
t.schloesser@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics