Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blattlaus-Alarm: Senföl-Glycoside schützen

29.04.2009
Gen entdeckt, das in Kreuzblütlern dazu beiträgt, ein spezielles Senföl-Glycosid gegen die grüne Pfirsich-Blattlaus zu bilden

Nicht nur Nutz- und Zierpflanzen haben Probleme mit Blattläusen, auch Modellpflanzen aus Forschung und Pflanzenzüchtung wie Arabidopsis thaliana werden von ihnen attackiert.

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Paris-Sud (Orsay) haben durch genetische Analysen ein Gen entdeckt, das die pflanzeneigene Verteidigung gegen Blattläuse stärkt. Das Gen CYP81F2 bewirkt eine chemische Veränderung natürlich vorkommender Abwehrstoffe aus der Gruppe der Glucosinolate - auch bekannt als Senföl-Glycoside, die den stechend-scharfen Geschmack von Senf, Meerrettich und anderen Kohlgewächsen prägen - und beeinflusst so die Vermehrung der grünen Pfirsich-Blattlaus (Myzus persicae).

Aus der chemischen Grundstruktur von Senföl-Glycosiden können mehr als 120 verschiedene Glucosinolat-Moleküle gebildet werden. Pflanzen aus der Ordnung der Brassicales, zu der auch Kreuzblütler wie Arabidopsis thaliana gehören, besitzen Enzyme, die diese molekulare Vielfalt erzeugen und so zur Abwehr gegen Schädlinge beitragen können. Schon lange bekannt sind Glucosinolate als Giftstoffe gegen Fraßfeinde. Und erst kürzlich konnten Max-Planck-Wissenschaftler zeigen, dass Glucosinolate im pflanzlichen Stoffwechsel auch zu Molekülen umgewandelt werden können, die in Pflanzen gegen Pilzbefall wirken [1].

Mit der Entdeckung des Gens CYP81F2, seiner nachfolgenden Charakterisierung und durch Laborversuche mit der grünen Pfirsich-Blattlaus kommt nun eine neue Rolle der Glucosinolate als Wirkstoff gegen Blattläuse hinzu. "In Versuchsreihen mit Wildtyp-Pflanzen, die das intakte Gen tragen, und Mutanten, in denen CYP81F2 nicht mehr funktionierte, konnten wir feststellen, dass sich auf den Wildtyp-Pflanzen nach einer Woche etwa ein Drittel weniger Blattläuse tummelten als auf den Mutanten. Da Blattläuse sich nahezu exponentiell vermehren, können wir daraus schließen, dass CYP81F2 eine enorme Auswirkung auf das Wachstum von Blattlaus-Kolonien hat", so Marina Pfalz, die als Doktorandin die Versuche durchgeführt hat und jetzt an der Universität in Paris-Orsay forscht.

CYP81F2 kodiert ein Enzym (eine so genannte Cytochrom P450 Monooxygenase), das die Bildung des gegen Blattläuse wirksamen Senföl-Glycosids 4-Methoxyindol-3-yl-methylglucosinolat (4MO-I3M) einleitet. Gegen die Raupen von anderen Insekten wie Schmetterlingen (Kohlweißling) und Motten (Kohlmotte) zeigte der Stoff keinerlei Wirkung. Er richtet sich somit wahrscheinlich ganz spezifisch gegen Blattlausbefall. "Blattläuse beißen keine Stücke aus den Blättern, so wie Raupen das tun. Stattdessen zapfen sie gezielt und ohne größeren Schaden am pflanzlichen Gewebe direkt die Blattadern an, welche Glucosinolate enthalten, die gegen die Blattläuse wirken", so der Leiter der Studie, Juergen Kroymann.

Nur Kreuzblütler und verwandte Pflanzen können Glucosinolate bilden und sich damit via 4MO-I3M gegen Blattläuse wehren. Wichtige Nutzpflanzen wie sämtliche Kohlsorten und auch Raps, die zur Familie der Kreuzblütler gehören, können so einen Blattlausbefall in Grenzen halten. Das Wissen um das Gen CYP81F2 und den Wirkstoff 4MO-I3M verspricht neue Entwicklungen und Anwendungen in der Pflanzenzüchtung und im Pflanzenschutz.

Die genetischen Analysen, die die Wissenschaftler einsetzten, basierten auf der Kartierung eines so genannten "quantitative trait locus" (QTL), also einer genetischen Region auf einem der Chromosomen von Arabidopsis thaliana, der verantwortlich für Variationen im Glucosinolatstoffwelchsel ist. Durch Feinkartierung und umfassende Genexpressions-Analysen konnte schließlich das Gen CYP81F2 identifiziert werden. Das Ur-Substrat für das Senföl-Glycosid 4MO-I3M ist die Aminosäure Tryptophan. [JWK]

[1] Bednarek et al., Science 323:101-106, 2009

Originalpublikation:
Marina Pfalz, Heiko Vogel, Juergen Kroymann, The gene controlling the Indole Glucosinolate Modifier 1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis, The Plant Cell 21, 985-999 (2009).
Weitere Informationen erhalten Sie von:
Dr. Juergen Kroymann, Université Paris 11, Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR8079, F-91405 Orsay cedex, Tel. : +33 1 69 15 70 49 ; juergen.kroymann@u-psud.fr
Bildmaterial:
Angela Overmeyer M.A., MPI chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena
Tel.: 03641 - 57 2110, overmeyer@ice.mpg.de
Das Max-Planck-Institut für chemische Ökologie
Chemische Ökologie ist eine junge Disziplin der Biologie. Wechselwirkungen, schädliche wie nützliche, werden durch chemische Signale zwischen Lebewesen vermittelt. Wissenschaftlerinnen und Wissenschaftler erforschen die Struktur und Funktion der Moleküle, die das Wechselspiel zwischen Pflanzen, Insekten und Mikroben steuern, und erzielen Erkenntnisse über Wachstum, Entwicklung, Verhalten und Ko-Evolution pflanzlicher und tierischer Arten. Ergebnisse dieser biologischen Grundlagenforschung werden für Naturstoffanalysen, moderne Umweltforschung und zeitgemäße Agrikulturverfahren genutzt. Das Institut verfügt über Forschungsgewächshäuser, Klimakammern, Insektenzuchtanlagen, Geruchsdetektionssysteme, Windtunnel, neurophysiologische Analyseverfahren und Freilandstationen.

Dr. Jan-Wolfhard Kellmann | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops